![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Spatial point processes play a fundamental role in spatial statistics and today they are a very active area of research with many new and emerging applications. Although published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and nowhere can one find a comprehensive treatment of the theory and applications of simulation-based inference. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo (MCMC) algorithms and explore one of the most important recent developments in MCMC-perfect simulation procedures.
Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model-based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and Håvard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001. The editor, Jesper Moller, Professor of statistics at Aalborg University, and the above-mentioned contributors have all been associated with the European Union's TMR network "Statistics and Computational Methods for the Analysis of Spatial Data. ERB-FMRX-CT96-0095."
Tessellations are subdivisions of d-dimensional space into non-overlapping "cells." Voronoi tessellations are produced by first considering a set of points (known as nuclei) in d-space, and then defining cells as the set of points which are closest to each nuclei. A random Voronoi tessellation is produced by supposing that the location of each nuclei is determined by some random process. They provide models for many natural phenomena as diverse as the growth of crystals, the territories of animals, the development of regional market areas, and in subjects such as computational geometry and astrophysics. This volume provides an introduction to random Voronoi tessellations by presenting a survey of the main known results and the directions in which research is proceeding. Throughout the volume, mathematical and rigorous proofs are given making this essentially a self-contained account in which no background knowledge of the subject is assumed.
|
You may like...
Coastal Zones - Solutions for the 21st…
Juan Baztan, Omer Chouinard, …
Paperback
R1,820
Discovery Miles 18 200
|