![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This monograph offers a comprehensive overview of diverse quantization phenomena in layered materials, covering current mainstream experimental and theoretical research studies, and presenting essential properties of layered materials along with a wealth of figures. This book illustrates commonly used synthesis methods of these 2D materials and compares the calculated results and experimental measurements, including novel features not yet reported. The book also discusses experimental measurements of magnetic quantization, theoretical modeling for studying systems and covers diversified magneto-electronic properties, magneto-optical selection rules, unusual quantum Hall conductivities, and single- and many-particle magneto-Coulomb excitations. Rich and unique behaviors are clearly revealed in few-layer graphene systems with distinct stacking configuration, stacking-modulated structures, silicon-doped lattices, bilayer silicene/germanene systems with the bottom-top and bottom-bottom buckling structures, monolayer and bilayer phosphorene systems, and quantum topological insulators. The generalized tight-binding model, the static and dynamic Kubo formulas, and the random-phase approximation are developed/modified to thoroughly explore the fundamental properties and propose the concise physical pictures. Different high-resolution experimental measurements are discussed in detail, and they are consistent with the theoretical predictions. Aimed at readers working in materials science, physics, and engineering this book should be useful for potential applications in energy storage, electronic devices, and optoelectronic devices.
Coulomb Excitations and Decays in Graphene-Related Systems provides an overview of the subject under the effects of lattice symmetries, layer numbers, dimensions, stacking configurations, orbital hybridizations, intralayer and interlayer hopping integrals, spin-orbital couplings, temperatures, electron/hole dopings, electric field, and magnetic quantization while presenting a new theoretical framework of the electronic properties and the electron-electron interactions together. This book presents a well-developed theoretical model and addresses important advances in essential properties and diverse excitation phenomena. Covering plenty of critical factors related to the field, the book also addresses the theoretical model which is applicable to various dimension-enriched graphene-related systems and other 2D materials, including layered graphenes, graphites, carbon nanotubes, silicene, and germanene. The text is aimed at professionals in materials science, physics, physical chemistry, and upper level students in these fields.
Coulomb Excitations and Decays in Graphene-Related Systems provides an overview of the subject under the effects of lattice symmetries, layer numbers, dimensions, stacking configurations, orbital hybridizations, intralayer and interlayer hopping integrals, spin-orbital couplings, temperatures, electron/hole dopings, electric field, and magnetic quantization while presenting a new theoretical framework of the electronic properties and the electron-electron interactions together. This book presents a well-developed theoretical model and addresses important advances in essential properties and diverse excitation phenomena. Covering plenty of critical factors related to the field, the book also addresses the theoretical model which is applicable to various dimension-enriched graphene-related systems and other 2D materials, including layered graphenes, graphites, carbon nanotubes, silicene, and germanene. The text is aimed at professionals in materials science, physics, physical chemistry, and upper level students in these fields.
|
![]() ![]() You may like...
Teresa of Avila - Mystical Theology and…
Peter Tyler, Edward Howells
Paperback
R1,513
Discovery Miles 15 130
|