0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Efficient Integration of 5G and Beyond Heterogeneous Networks (Hardcover, 1st ed. 2020): Zi-Yang Wu, Muhammad Ismail, Justin... Efficient Integration of 5G and Beyond Heterogeneous Networks (Hardcover, 1st ed. 2020)
Zi-Yang Wu, Muhammad Ismail, Justin Kong, Erchin Serpedin, Jiao Wang
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

This book discusses the smooth integration of optical and RF networks in 5G and beyond (5G+) heterogeneous networks (HetNets), covering both planning and operational aspects. The integration of high-frequency air interfaces into 5G+ wireless networks can relieve the congested radio frequency (RF) bands. Visible light communication (VLC) is now emerging as a promising candidate for future generations of HetNets. Heterogeneous RF-optical networks combine the high throughput of visible light and the high reliability of RF. However, when implementing these HetNets in mobile scenarios, several challenges arise from both planning and operational perspectives. Since the mmWave, terahertz, and visible light bands share similar wave propagation characteristics, the concepts presented here can be broadly applied in all such bands. To facilitate the planning of RF-optical HetNets, the authors present an algorithm that specifies the joint optimal densities of the base stations by drawing on stochastic geometry in order to satisfy the users' quality-of-service (QoS) demands with minimum network power consumption. From an operational perspective, the book explores vertical handovers and multi-homing using a cooperative framework. For vertical handovers, it employs a data-driven approach based on deep neural networks to predict abrupt optical outages; and, on the basis of this prediction, proposes a reinforcement learning strategy that ensures minimal network latency during handovers. In terms of multi-homing support, the authors examine the aggregation of the resources from both optical and RF networks, adopting a two-timescale multi-agent reinforcement learning strategy for optimal power allocation. Presenting comprehensive planning and operational strategies, the book allows readers to gain an in-depth grasp of how to integrate future coexisting networks at high-frequency bands in a cooperative manner, yielding reliable and high-speed 5G+ HetNets.

Efficient Integration of 5G and Beyond Heterogeneous Networks (Paperback, 1st ed. 2020): Zi-Yang Wu, Muhammad Ismail, Justin... Efficient Integration of 5G and Beyond Heterogeneous Networks (Paperback, 1st ed. 2020)
Zi-Yang Wu, Muhammad Ismail, Justin Kong, Erchin Serpedin, Jiao Wang
R1,366 Discovery Miles 13 660 Ships in 18 - 22 working days

This book discusses the smooth integration of optical and RF networks in 5G and beyond (5G+) heterogeneous networks (HetNets), covering both planning and operational aspects. The integration of high-frequency air interfaces into 5G+ wireless networks can relieve the congested radio frequency (RF) bands. Visible light communication (VLC) is now emerging as a promising candidate for future generations of HetNets. Heterogeneous RF-optical networks combine the high throughput of visible light and the high reliability of RF. However, when implementing these HetNets in mobile scenarios, several challenges arise from both planning and operational perspectives. Since the mmWave, terahertz, and visible light bands share similar wave propagation characteristics, the concepts presented here can be broadly applied in all such bands. To facilitate the planning of RF-optical HetNets, the authors present an algorithm that specifies the joint optimal densities of the base stations by drawing on stochastic geometry in order to satisfy the users' quality-of-service (QoS) demands with minimum network power consumption. From an operational perspective, the book explores vertical handovers and multi-homing using a cooperative framework. For vertical handovers, it employs a data-driven approach based on deep neural networks to predict abrupt optical outages; and, on the basis of this prediction, proposes a reinforcement learning strategy that ensures minimal network latency during handovers. In terms of multi-homing support, the authors examine the aggregation of the resources from both optical and RF networks, adopting a two-timescale multi-agent reinforcement learning strategy for optimal power allocation. Presenting comprehensive planning and operational strategies, the book allows readers to gain an in-depth grasp of how to integrate future coexisting networks at high-frequency bands in a cooperative manner, yielding reliable and high-speed 5G+ HetNets.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Playing Through the Seasons - Cold…
Essie Bell Hardcover R538 Discovery Miles 5 380
Binary Stars: Selected Topics on…
F.C. Lazaro, M.J. Arevalo Hardcover R2,833 Discovery Miles 28 330
Sailing Alone Around the World
Joshua Slocum Hardcover R749 Discovery Miles 7 490
Closer To Love - How To Attract The…
Vex King Paperback R360 R326 Discovery Miles 3 260
Expedition 196
Cassie de Pecol Hardcover R1,352 R801 Discovery Miles 8 010
An American Marriage
Tayari Jones Paperback  (1)
R280 R250 Discovery Miles 2 500
Flying Creatures Paper Airplane Book…
Ken Blackburn, Jeff Lammers Paperback  (1)
R239 R226 Discovery Miles 2 260
The Wheelwright's Shop
George Sturt Hardcover R729 Discovery Miles 7 290
Eyes Upside Down - Visonary Filmmakers…
P. Adams Sitney Hardcover R3,766 Discovery Miles 37 660
How to Build a Shed
Sally Coulthard Hardcover R576 R516 Discovery Miles 5 160

 

Partners