Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.
This volume provides in-depth coverage of environmental pollution sources, waste characteristics, control technologies, management strategies, facility innovations, process alternatives, costs, case histories, effluent standards, and future trends in waste treatment processes. It delineates methodologies, technologies, and the regional and global effects of important pollution control practices. It focuses on specific industrial and manufacturing wastes and their remediation. Topics include: heavy metals, electronics, chemical, and textile manufacturing.
A successful modern heavy metal control program for any industry will include not only traditional water pollution control, but also air pollution control, soil conservation, site remediation, groundwater protection, public health management, solid waste disposal, and combined industrial-municipal heavy metal waste management. In fact, it should be a total environmental control program. Comprehensive in scope, Heavy Metals in the Environment provides technical and economical information on the development of a feasible total heavy metal control program that can benefit industry and local municipalities. The book discusses the importance and contamination of metals such as lead, chromium, cadmium, zinc, copper, nickel, iron, and mercury. It covers important research of metals in the environment, the processes and mechanisms for metals control and removal, the environmental behavior and effects of engineered metal and metal oxide nanoparticles, environmental geochemistry of high arsenic aquifer systems, nano-technology applications in metal ion adsorption, biosorption of metals, and heavy metal removal by expopolysaccharide-producing cyanobacteria. The authors delineate technologies for metals treatment and management, metal bearing effluents, metal-contaminated solid wastes, metal finishing industry wastes and brownfield sites, and arsenic-contaminated groundwater streams. They also discuss control, treatment, and management of metal emissions from motor vehicles. The authors reflect the breadth of the field and draw on personal experiences to provide an in-depth presentation of environmental pollution sources, waste characteristics, control technologies, management strategies, facility innovations, process alternatives, costs, case histories, effluent standards, and future trends for each industrial or commercial operation. The methodologies and technologies discussed are directly applicable to the waste management problems that must be met in all industries.
In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.
A successful modern heavy metal control program for any industry will include not only traditional water pollution control, but also air pollution control, soil conservation, site remediation, groundwater protection, public health management, solid waste disposal, and combined industrial-municipal heavy metal waste management. In fact, it should be a total environmental control program. Comprehensive in scope, Heavy Metals in the Environment provides technical and economical information on the development of a feasible total heavy metal control program that can benefit industry and local municipalities. The book discusses the importance and contamination of metals such as lead, chromium, cadmium, zinc, copper, nickel, iron, and mercury. It covers important research of metals in the environment, the processes and mechanisms for metals control and removal, the environmental behavior and effects of engineered metal and metal oxide nanoparticles, environmental geochemistry of high arsenic aquifer systems, nano-technology applications in metal ion adsorption, biosorption of metals, and heavy metal removal by expopolysaccharide-producing cyanobacteria. The authors delineate technologies for metals treatment and management, metal bearing effluents, metal-contaminated solid wastes, metal finishing industry wastes and brownfield sites, and arsenic-contaminated groundwater streams. They also discuss control, treatment, and management of metal emissions from motor vehicles. The authors reflect the breadth of the field and draw on personal experiences to provide an in-depth presentation of environmental pollution sources, waste characteristics, control technologies, management strategies, facility innovations, process alternatives, costs, case histories, effluent standards, and future trends for each industrial or commercial operation. The methodologies and technologies discussed are directly applicable to the waste management problems that must be met in all industries.
Heavy metals, such as lead, chromium, cadmium, zinc, copper, and nickel, are important constituents of most living organisms, as well as many nonliving substances. Some heavy metals are essential for growth of biological and microbiological lives, yet their presence in excessive quantities is harmful to humans and interferes with many environmental processes. Heavy metals are also nonbiodegradable, making them more difficult to remediate. Decontamination of Heavy Metals: Processes, Mechanisms, and Applications tackles the subject of heavy metals in the environment, with special emphasis on their treatment, removal, recovery, disposal, management, and modeling. Concepts, Cutting-Edge Technologies, and Applications The book provides in-depth coverage of the major hazardous heavy metals that are found in water, land, and facilities and that have significant effects on public health and the environment. After an overview of heavy metal contamination, the text reviews the concepts and technologies of pollution prevention. It then examines technologies for metal decontamination, ranging from precipitation which is the most commonly used to cutting-edge technologies such as precipitation-crystallization, ion exchange, membrane filtration, and electrolysis. Mathematical models for metal removal and recovery are also included. Develop a Feasible Total Heavy Metal Control Program Complementing other books in the Advances in Industrial and Hazardous Wastes Treatment series, this volume presents important research related to the remediation of heavy metals. Extensive references are included for readers who want to trace, duplicate, or improve on a specific industrial hazardous waste treatment practice. A comprehensive handbook for environmental professionals, researchers, and students, it provides technical information to help readers develop a feasible total metal control program that can benefit both industry and local municipalities.
This volume provides in-depth coverage of environmental pollution sources, waste characteristics, control technologies, management strategies, facility innovations, process alternatives, costs, case histories, effluent standards, and future trends in the process industries. It delineates methodologies, technologies, and the regional and global effects of important pollution control practices. The authors focus on new developments in innovative and alternative technologies, design criteria, effluent standards, managerial decision methodology, and regional and global environmental conservation specific to process industries.
This volume provides in-depth coverage of environmental pollution sources, waste characteristics, control technologies, management strategies, facility innovations, process alternatives, costs, case histories, effluent standards, and future trends in waste treatment processes. It delineates methodologies, technologies, and the regional and global effects of important pollution control practices. The book also focuses on toxic heavy metals in the environment, various heavy metal decontamination technologies, brownfield restoration, and industrial, agricultural, and radioactive waste management. It discusses the importance of metals such as lead, chromium, cadmium, zinc, copper, nickel, iron, and mercury.
|
You may like...
Multilingualism and Exclusion - Practice…
Michael Meeuwis, Pol Cuvelier, …
Paperback
The Yew Chung Approach to Early…
Stephanie C. Sanders-Smith, Sylvia Ya-Hsuan Yang, …
Paperback
R1,081
Discovery Miles 10 810
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|