Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Conventional books on the mechanics of materials treat elastic deformations of solids through one-dimensional models for the extension of rods, torsion of shafts and bending of beams. In functional materials, mechanical, thermal, electric and magnetic fields interact among themselves, and therefore, need a more comprehensive model.This book presents a systematic treatment of the three-dimensional theories for these coupled phenomena and the corresponding one-dimensional models for extension, torsion and bending. This book adopts a mixed approach by devoting the first half of the book to the development of the three-dimensional theories of elastic, thermal, electric and magnetic fields as well as their interactions in dielectrics, conductors and semiconductors. The remainder of the book presents the one-dimensional models for extension, torsion and bending systematically.
Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.
This textbook introduces theoretical piezoelectricity. The second edition updates a classical, seminal reference on a fundamental topic that is addressed in every materials science curriculum. It presents a concise treatment of the basic theoretical aspects of continuum modeling of electroelastic interactions in solids. The general nonlinear theory for large deformations and strong fields is established and specialized to the linear theory for small deformations and weak fields, i.e., the theory of piezoelectricity. Relatively simple and useful solutions of many static and dynamic problems of piezoelectricity that are useful in device applications are given. Emphasis is on the formulation of solutions to problems rather than advanced mathematical solution techniques. This book includes many examples to assist and enhance students' understanding of piezoelectricity and piezoelastics.
This book is based on lecture notes for a graduate course that has been offered at University of Nebraska-Lincoln on and off since 1998. The course is intended to provide graduate students with the basic aspects of the continuum modeling of electroelastic interactions in solids. A concise treatment of linear, nonlinear, static and dynamic theories and problems is presented. The emphasis is on formulation and understanding of problems useful in device applications rather than solution techniques of mathematical problems. The mathematics used in the book is minimal. The book is suitable for a one-semester graduate course on electroelasticity. It can also be used as a reference for researchers. I would like to take this opportunity to thank UNL for a Maude Hammond Fling Faculty Research Fellowship in 2003 for the preparation of the first draft of this book. I also wish to thank Ms. Deborah Derrick of the College of Engineering and Technology at UNL for editing assistance with the book, and Professor David Y. Gao of Virginia Polytechnic Institute and State University for recommending this book to Kluwer for publication in the series of Advances in Mechanics and Mathematics. JSY Lincoln, Nebraska 2004 Preface Electroelastic materials exhibit electromechanical coupling. They experience mechanical deformations when placed in an electric field, and become electrically polarized under mechanical loads. Strictly speaking, piezoelectricity refers to linear electromechanical couplings only.
Theory of Electromagnetoelasticity presents a systematic and unique treatment of elastic, electric and magnetic interactions in solids including various thermal and dissipative effects such as viscoelasticity and electrical conduction. In this book, a general and nonlinear continuum theory is constructed. The fundamental building blocks of the theory — the electromagnetic body force, couple and power — are calculated from a multi-continuum model consisting of a lattice continuum for elastic deformation, a bound charge continuum for electric polarization, a circulating current continuum for magnetization, and a free charge fluid for electrical conduction. The multi-continuum model is simpler than the common charged particle model and reveals the underlying physics from a unique angle. The complete set of Maxwell's equations for the electromagnetic fields is included without the widely used quasistatic approximations of the electric and/or magnetic fields. The theory established can be used to describe different kinds of interactions between acoustic and optical fields or waves. Some linear problems are analyzed as examples to show some of the simplest elastic and electromagnetic couplings.
As a continuation of the author's previous book An Introduction to the Theory of Piezoelectricity (Springer, New York, 2005) on the three-dimensional theory of piezoelectricity, this book covers one- and two-dimensional theories of piezoelectric structures including rods, beams, plates and shells. In addition to the so-called low-frequency motions of extension and bending, high-frequency motions of thickness shear and thickness stretch are also considered for certain applications unique in resonant piezoelectric devices. Both single-layer and multi-layer structures are treated. Nonlinear effects due to large deflection or large shear deformation are also discussed. The emphasis in on the development of structural theories with various levels of sophistication for different applications in piezoelectric devices.The book is heavily influenced by R D Mindlin's early contributions to this field. It is destined to be one of the most systematic and comprehensive books on piezoelectric structures. This second edition is a major reorganization of the first edition with multiple additions as well as deletion of chapters and sections.
This book presents the mechanics of piezoelectric semiconductor structures where the main electromechanical coupling of interest is the interaction between mechanical fields and semiconduction. This volume stands as the first full book treatment of this multi-physical subject from the mechanics angle. The analysis of piezoelectric semiconductor structures and devices is an emerging and rapidly growing interdisciplinary area involving materials, electronics, and solid mechanics. It has direct applications in the new area of piezotronics and piezo-phototronics. The book is theoretical, beginning with a phenomenological framework and progressing to include solutions to problems fundamental to the theory and application. Dr. Yang illustrates how in piezoelectric semiconductors, mechanical fields interact with semiconduction through the piezoelectrically produced electric fields by mechanical loads. This provides the foundation of piezotronic and piezo-phototronic devices in which semiconduction is induced, affected, manipulated, or controlled by mechanical fields. Also discussing composite structures of piezoelectric dielectrics and nonpiezoelectric semiconductors as well as thermal effects, the book is an ideal basic reference on the topic for researchers.
The first contemporary text specializing on the dynamic problems of piezoelectric crystal plates for resonant acoustic wave devices (such as resonators, filters, and sensors) since H F Tiersten's publication in 1969. This book provides an up-to-date, systematic and comprehensive presentation of theoretical results on waves and vibrations in quartz crystal plates. It expounds on the application of the theories of elasticity and piezoelectricity in acoustic wave devices made from crystal plates through a coverage spanning from classical results on acoustic wave resonators, up to present-day applications in acoustic wave sensors. This text begins with the exposition of the simplest thickness modes and various frequency effects in them due to electrodes, mass loading, contact with fluids, air gaps, etc., and continues on to the more complicated shear-horizontal modes, as well as straight-crested modes varying along the digonal axis of rotated Y-cut quartz. Modes varying in both of the in-plane directions of crystal plates are also addressed. The analysis within are based on the three-dimensional theories of piezoelectricity and anisotropic elasticity with various approximations when needed. Both free vibration modes (stationary waves) and propagating waves are studied in this text. Forced vibration is also treated in a few places. This book is intended to serve as an informative reference to personnel who employ piezoelectric crystal plates in the course of their profession.
This book focuses on dynamic antiplane problems of piezoelectric ceramics. It presents relatively simple theoretical solutions to many such problems, and attempts to use these solutions to demonstrate the operation and design of several acoustic wave devices. Some of the solutions are able to show the underlying physics clearly without the need for numerical computation. The problems treated include the propagation of plate waves, surface waves, interface waves, Love waves, gap waves, and vibrations of finite bodies of various shapes with applications in resonators, mass sensors, fluid sensors, interface sensors, phononic crystals, piezoelectric generators or power harvesters, piezoelectric transformers, power or signal transmission through an elastic wall, and acoustic wave excitation and detection for nondestructive evaluation.
This book presents the mechanics of piezoelectric semiconductor structures where the main electromechanical coupling of interest is the interaction between mechanical fields and semiconduction. This volume stands as the first full book treatment of this multi-physical subject from the mechanics angle. The analysis of piezoelectric semiconductor structures and devices is an emerging and rapidly growing interdisciplinary area involving materials, electronics, and solid mechanics. It has direct applications in the new area of piezotronics and piezo-phototronics. The book is theoretical, beginning with a phenomenological framework and progressing to include solutions to problems fundamental to the theory and application. Dr. Yang illustrates how in piezoelectric semiconductors, mechanical fields interact with semiconduction through the piezoelectrically produced electric fields by mechanical loads. This provides the foundation of piezotronic and piezo-phototronic devices in which semiconduction is induced, affected, manipulated, or controlled by mechanical fields. Also discussing composite structures of piezoelectric dielectrics and nonpiezoelectric semiconductors as well as thermal effects, the book is an ideal basic reference on the topic for researchers.
Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.
|
You may like...
|