![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors experience both as researchers and teachers enable
them to convert current research on extracting effective dynamics
of stochastic partial differential equations into concise and
comprehensive chapters. The book helps readers by providing an
accessible introduction to probability tools in Hilbert space and
basics of stochastic partial differential equations. Each chapter
also includes exercises and problems to enhance
comprehension.
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics. The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.
The mathematical theory of stochastic dynamics has become an important tool in the modeling of uncertainty in many complex biological, physical, and chemical systems and in engineering applications - for example, gene regulation systems, neuronal networks, geophysical flows, climate dynamics, chemical reaction systems, nanocomposites, and communication systems. It is now understood that these systems are often subject to random influences, which can significantly impact their evolution. This book serves as a concise introductory text on stochastic dynamics for applied mathematicians and scientists. Starting from the knowledge base typical for beginning graduate students in applied mathematics, it introduces the basic tools from probability and analysis and then develops for stochastic systems the properties traditionally calculated for deterministic systems. The book's final chapter opens the door to modeling in non-Gaussian situations, typical of many real-world applications. Rich with examples, illustrations, and exercises with solutions, this book is also ideal for self-study.
The mathematical theory of stochastic dynamics has become an important tool in the modeling of uncertainty in many complex biological, physical, and chemical systems and in engineering applications - for example, gene regulation systems, neuronal networks, geophysical flows, climate dynamics, chemical reaction systems, nanocomposites, and communication systems. It is now understood that these systems are often subject to random influences, which can significantly impact their evolution. This book serves as a concise introductory text on stochastic dynamics for applied mathematicians and scientists. Starting from the knowledge base typical for beginning graduate students in applied mathematics, it introduces the basic tools from probability and analysis and then develops for stochastic systems the properties traditionally calculated for deterministic systems. The book's final chapter opens the door to modeling in non-Gaussian situations, typical of many real-world applications. Rich with examples, illustrations, and exercises with solutions, this book is also ideal for self-study.
|
![]() ![]() You may like...
|