Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie." These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting. The well known topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects, leading up to the localization theorems and other very recent results."
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and H rmander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine the basic motivations and ideas of the early sources with knowledgeable and lucid expositions on the present state of Fourier Integral Operators, thus bridging the gap between the past and present. A handy and useful introduction that will serve novices in this field and working mathematicians equally well.
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space - Time - Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy - Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson-Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and H rmander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine the basic motivations and ideas of the early sources with knowledgeable and lucid expositions on the present state of Fourier Integral Operators, thus bridging the gap between the past and present. A handy and useful introduction that will serve novices in this field and working mathematicians equally well.
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie." These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting. The well known topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects, leading up to the localization theorems and other very recent results."
Praktiken visueller Welterzeugung in Form von Weltbildern lassen sich bereits in der Antike beobachten und haben sich bis heute als Mittel zur Konstruktion von Ordnungsvorstellungen bewahrt. Seit jeher steht der begrifflichen Ordnung der Welt eine modellhaft anschauliche Ordnung gegenuber. Die grundlegende Bedeutung, die Anschaulichkeit fur unser Verstandnis von der Welt spielt und die die vielfaltigsten Weltbilder hervorgebracht hat, ist jedoch mehr als eine blosse Wiederholung des Sehens. Die Bildwelten der Weltbilder geben uns nicht nur ein anschauliches Bild von der Welt und vom Kosmos. Sie sind zugleich wirkungsmachtige Instrumente zum praktischen und theoretischen Handeln in der Welt und formen auf unterschiedlichste Weise unsere Vorstellungen von der Welt und unsere Weltanschauung. Die grundlegenden Fragen, die dabei gestellt werden, haben sich durch die Jahrhunderte nicht wirklich geandert. Sie betreffen die den Menschen umfassende Ordnung und seine Stellung innerhalb dieser Ordnung: Welche Gestalt hat die Welt? Welche Krafte und Ideen wirken in ihr? Woraus besteht sie? Wie ist sie entstanden? Wie sieht ihre Zukunft aus? Bereits die fruhen Beispiele von Weltbildern machen deutlich, dass die sowohl in Bildern als auch in Erzahlungen zur Erscheinung gebrachte Wirklichkeit immer eine vom Menschen hervorgebrachte ist und daher stets interpretierte Wirklichkeit und symbolische Konstruktion bedeutet. Die gesammelten Beispiele reprasentieren zugleich unterschiedliche visuelle Medien, die im Dienst der Konstruktion der Welt als Bild stehen. Damit ist die Geschichte der Weltbilder nicht nur eine Geschichte wechselnder Weltvorstellungen, sondern zugleich auch eine Geschichte wechselnder Darstellungsmethoden und unterschiedlicher Tragermedien. Der Atlas der Weltbilder behandelt ein breites Spektrum von Artefakten und schreitet einen grossen zeitlichen Bogen ab, der mit altorientalischen und altagyptischen Weltkonzeptionen beginnt und mit aktuellen Simulationen der Astrophysik endet. Der Atlas der Weltbilder dokumentiert somit Aspekte der Kulturgeschichte visueller Welterzeugung in Form von Weltbildern aus den zuruckliegenden zweieinhalb Jahrtausenden. Paradigmatische Analysen der Prinzipien und Funktionen sowie der Geschichte und Bedeutung von Weltbildern geben erstmals umfassenden Aufschluss uber dieses umfangreiche Themengebiet."
|
You may like...
|