0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Demystifying Big Data and Machine Learning for Healthcare (Paperback): Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz Demystifying Big Data and Machine Learning for Healthcare (Paperback)
Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz
R1,155 Discovery Miles 11 550 Ships in 12 - 17 working days

Healthcare transformation requires us to continually look at new and better ways to manage insights - both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization's day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V's that matter in healthcare and why Harmonize the 4 C's across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Demystifying Big Data and Machine Learning for Healthcare (Hardcover): Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz Demystifying Big Data and Machine Learning for Healthcare (Hardcover)
Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz
R2,482 Discovery Miles 24 820 Ships in 12 - 17 working days

Healthcare transformation requires us to continually look at new and better ways to manage insights - both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization's day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V's that matter in healthcare and why Harmonize the 4 C's across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Paint a Butterfly
Anne Giulieri Paperback R126 Discovery Miles 1 260
Primary Story Journal - Rainbow Unicorn…
Young Dreamers Press Paperback R313 Discovery Miles 3 130
Grammar 2 Pupil Book - In Print Letters…
Sara Wernham, Sue Lloyd Paperback R242 R229 Discovery Miles 2 290
My First Mongolian Alphabets Picture…
Badma S Hardcover R519 Discovery Miles 5 190
The Littlest Learners - Preparing Your…
Dawn R. Roginski Paperback R645 Discovery Miles 6 450
USS Iowa (BB-61): The Story of "The Big…
David Doyle Hardcover R653 R562 Discovery Miles 5 620
Edmund Burke
Dennis O'Keeffe Hardcover R5,712 Discovery Miles 57 120
Creativity, Talent and Excellence
AI-Girl Tan Hardcover R4,299 R3,717 Discovery Miles 37 170
Freestyle Cooking With Chef Ollie
Oliver Swart Hardcover R450 R415 Discovery Miles 4 150
The Right and Democracy in Latin America
Douglas A. Chalmers, Maria do Carmo Campello de Souza, … Hardcover R2,945 Discovery Miles 29 450

 

Partners