Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The second edition of Loudspeaker Handbook follows the same general outlines as the highly successful first edition and has been augmented and updated in many areas of technology. Most notable are the developments in large-scale, programmable line arrays, distributed mode loudspeakers, and ultrasonic-based audio transduction. Additionally, the core chapters on low frequency systems, system concepts, and horn systems have been expanded to include both more analytical material and a richer array of examples. Much of the success of the first edition has been due to its accessibility both to loudspeaker engineers and to lay technicians working in the field - a point of view the author maintains in the present work. A full understanding of the underlying technology requires a fairly rigorous engineering background through the second year of professional study. At the same time, the generous use of graphs, with their intuitive thrust, will be useful to all readers. Loudspeaker Handbook, Second Edition continues to be appropriate for use in courses at the undergraduate senior level, for graduate students, and for professionals in audio and acoustical engineering.
The need for a general collection of electroacoustical reference and design data in graphical form has been felt by acousticians and engineers for some time. This type of data can otherwise only be found in a collection of handbooks. Therefore, it is the author's intention that this book serve as a single source for many electroacoustical reference and system design requirements. In form, the volume closely resembles Frank Massa's Acoustic Design Charts, a handy book dating from 1942 that has long been out of print. The basic format of Massa's book has been followed here: For each entry, graphical data are presented on the right page, while text, examples, and refer ences appear on the left page. In this manner, the user can solve a given problem without thumbing from one page to the next. All graphs and charts have been scaled for ease in data entry and reading. The book is divided into the following sections: A. General Acoustical Relationships. This section covers the behavior of sound transmis sion in reverberant and free fields, sound absorption and diffraction, and directional characteris tics of basic sound radiators. B. Loudspeakers. Loudspeakers are discussed in terms of basic relationships regarding cone excursion, sensitivity, efficiency, and directivity index, power ratings, and architectural layout. c. Microphones. The topics in this section include microphone sensitivity and noise rating, analysis of directional properties, stereo microphone array characteristics, proximity effects, and boundary conditions. D. Signal Transmission."
John Eargle's 4th edition of The Handbook of Recording Engineering is the latest version of his long-time classic hands-on book for aspiring recording engineers. It follows the broad outline of its predecessors, but has been completely recast for the benefit of today's training in recording and its allied arts and sciences. Digital recording and signal processing are covered in detail, as are actual studio miking and production techniques -- including the developing field of surround sound. As always, the traditional topics of basic stereo, studio acoustics, analog tape recording, and the stereo LP are covered in greater detail than you are likely to find anywhere except in archival references. This book has been completely updated with numerous new topics added and outdated material removed. Many technical descriptions are now presented in Sidebars, leaving the primary text for more general descriptions. Handbook of Recording Engineering, Fourth Edition is for students preparing for careers in audio, recording, broadcast, and motion picture sound work. It will also be useful as a handbook for professionals already in the audio workplace.
The need for a general collection of electroacoustical reference and design data in graphical form has been felt by acousticians and engineers for some time. This type of data can otherwise only be found in a collection of handbooks. Therefore, it is the author's intention that this book serve as a single source for many electroacoustical reference and system design requirements. In form, the volume closely resembles Frank Massa's Acoustic Design Charts, a handy book dating from 1942 that has long been out of print. The basic format of Massa's book has been followed here: For each entry, graphical data are presented on the right page, while text, examples, and refer ences appear on the left page. In this manner, the user can solve a given problem without thumbing from one page to the next. All graphs and charts have been scaled for ease in data entry and reading. The book is divided into the following sections: A. General Acoustical Relationships. This section covers the behavior of sound transmis sion in reverberant and free fields, sound absorption and diffraction, and directional characteris tics of basic sound radiators. B. Loudspeakers. Loudspeakers are discussed in terms of basic relationships regarding cone excursion, sensitivity, efficiency, and directivity index, power ratings, and architectural layout. c. Microphones. The topics in this section include microphone sensitivity and noise rating, analysis of directional properties, stereo microphone array characteristics, proximity effects, and boundary conditions. D. Signal Transmission."
The second edition of Loudspeaker Handbook follows the same general outlines as the highly successful first edition and has been augmented and updated in many areas of technology. Most notable are the developments in large-scale, programmable line arrays, distributed mode loudspeakers, and ultrasonic-based audio transduction. Additionally, the core chapters on low frequency systems, system concepts, and horn systems have been expanded to include both more analytical material and a richer array of examples. Much of the success of the first edition has been due to its accessibility both to loudspeaker engineers and to lay technicians working in the field - a point of view the author maintains in the present work. A full understanding of the underlying technology requires a fairly rigorous engineering background through the second year of professional study. At the same time, the generous use of graphs, with their intuitive thrust, will be useful to all readers. Loudspeaker Handbook, Second Edition continues to be appropriate for use in courses at the undergraduate senior level, for graduate students, and for professionals in audio and acoustical engineering.
John Eargle's 4th edition of The Handbook of Recording Engineering is the latest version of his long-time classic hands-on book for aspiring recording engineers. It follows the broad outline of its predecessors, but has been completely recast for the benefit of today's training in recording and its allied arts and sciences. Digital recording and signal processing are covered in detail, as are actual studio miking and production techniques -- including the developing field of surround sound. As always, the traditional topics of basic stereo, studio acoustics, analog tape recording, and the stereo LP are covered in greater detail than you are likely to find anywhere except in archival references. This book has been completely updated with numerous new topics added and outdated material removed. Many technical descriptions are now presented in Sidebars, leaving the primary text for more general descriptions. Handbook of Recording Engineering, Fourth Edition is for students preparing for careers in audio, recording, broadcast, and motion picture sound work. It will also be useful as a handbook for professionals already in the audio workplace.
|
You may like...
|