Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
Design of Pulse Oximeters describes the hardware and software needed to make a pulse oximeter, and includes the equations, methods, and software required for them to function effectively. The book begins with a brief description of how oxygen is delivered to the tissue, historical methods for measuring oxygenation, and the invention of the pulse oximeter in the early 1980s. Subsequent chapters explain oxygen saturation display and how to use an LED, provide a survey of light sensors, and review probes and cables. The book closes with an assessment of techniques that may be used to analyze pulse oximeter performance and a brief overview of pulse oximetry applications. The book contains useful worked examples, several worked equations, flow charts, and examples of algorithms used to calculate oxygen saturation. It also includes a glossary of terms, instructional objectives by chapter, and references to further reading.
The Physiological Measurement Handbook presents an extensive range of topics that encompass the subject of measurement in all departments of medicine. The handbook describes the use of instruments and techniques for practical measurements required in medicine. It covers sensors, techniques, hardware, and software as well as information on processing systems, automatic data acquisition, reduction and analysis, and their incorporation for diagnosis. Suitable for both instrumentation designers and users, the handbook enables biomedical engineers, scientists, researchers, students, health care personnel, and those in the medical device industry to explore the different methods available for measuring a particular physiological variable. It helps readers select the most suitable method by comparing alternative methods and their advantages and disadvantages. In addition, the book provides equations for readers focused on discovering applications and solving diagnostic problems arising in medical fields not necessarily in their specialty. It also includes specialized information needed by readers who want to learn advanced applications of the subject, evaluative opinions, and possible areas for future study.
Accuracy in the laboratory setting is key to maintaining the integrity of scientific research. Inaccurate measurements create false and non-reproducible results, rendering an experiment or series of experiments invalid and wasting both time and money. This handy guide to solid, fluid, and thermal measurement helps minimize this pitfall through careful detailing of measurement techniques. Concise yet thorough, Mechanical Variables Measurement-Solid, Fluid, and Thermal describes the use of instruments and methods for practical measurements required in engineering, physics, chemistry, and the life sciences. Organized according to measurement problem, the entries are easy to access. The articles provide equations to assist engineers and scientists who seek to discover applications and solve problems that arise in areas outside of their specialty. Sections include references to more specialized publications for advanced techniques, as well. It offers instruction for a range of measuring techniques, basic through advanced, that apply to a broad base of disciplines. As an engineer, scientist, designer, manager, researcher, or student, you encounter the problem of measurement often and realize that doing it correctly is pivotal to the success of an experiment. This is the first place to turn when deciding on, performing, and troubleshooting the measurement process. Mechanical Variables Measurement-Solid, Fluid, and Thermal leads the reader, step-by-step, through the straits of experimentation to triumph.
Minimally invasive medicine has the goal of providing health care with minimal trauma. When minimally invasive surgery is utilized, it reduces the length of hospital stays, lowers costs, lowers pain, and reduces blood loss. Other minimally invasive techniques minimize radiation exposure, tissue damage, and drug side effects. Collecting contributions from workers in various fields within the sphere of minimally invasive medical technology, this book provides essential information for those involved with researching, designing, and using minimally invasive devices and systems. It emphasizes the technology required to accomplish minimally invasive medicine. The book will be of interest to biomedical engineers, medical physicists, and health care providers who want to know the technical workings of their devices and instruments.
Accuracy in the laboratory setting is key to maintaining the integrity of scientific research. Inaccurate measurements create false and non-reproducible results, rendering an experiment or series of experiments invalid and wasting both time and money. This handy guide to solid, fluid, and thermal measurement helps minimize this pitfall through careful detailing of measurement techniques. Concise yet thorough, Mechanical Variables Measurement-Solid, Fluid, and Thermal describes the use of instruments and methods for practical measurements required in engineering, physics, chemistry, and the life sciences. Organized according to measurement problem, the entries are easy to access. The articles provide equations to assist engineers and scientists who seek to discover applications and solve problems that arise in areas outside of their specialty. Sections include references to more specialized publications for advanced techniques, as well. It offers instruction for a range of measuring techniques, basic through advanced, that apply to a broad base of disciplines. As an engineer, scientist, designer, manager, researcher, or student, you encounter the problem of measurement often and realize that doing it correctly is pivotal to the success of an experiment. This is the first place to turn when deciding on, performing, and troubleshooting the measurement process. Mechanical Variables Measurement-Solid, Fluid, and Thermal leads the reader, step-by-step, through the straits of experimentation to triumph.
The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook provides extensive coverage of modern telecommunication in the medical industry, from sensors on and within the body to electronic medical records and beyond. Telemedicine and Electronic Medicine is the first volume of this handbook. Featuring chapters written by leading experts and researchers in their respective fields, this volume: Describes the integration of-and interactions between-modern eMedicine, telemedicine, eHealth, and telehealth practices Explains how medical information flows through wireless technologies and networks, emphasizing fast-deploying wireless body area networks Presents the latest developments in sensors, devices, and implantables, from medical sensors for mobile communication devices to drug-delivery systems Illustrates practical telemedicine applications in telecardiology, teleradiology, teledermatology, teleaudiology, teleoncology, acute care telemedicine, and more The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook bridges the gap between scientists, engineers, and medical professionals by creating synergy in the related fields of biomedical engineering, information and communication technology, business, and healthcare.
The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook provides extensive coverage of modern telecommunication in the medical industry, from sensors on and within the body to electronic medical records and beyond. Telehealth and Mobile Health is the second volume of this handbook. Featuring chapters written by leading experts and researchers in their respective fields, this volume: Discusses telesurgery, medical robotics, and image guidance as well as telenursing and remote patient care Describes the implementation of networks, data management, record management, and effective personnel training Explains how the use of new technologies brings many business, management, and service opportunities Provides examples of scientific advancements such as brain-controlled bionic human arms and hands Incorporates clinical applications throughout for practical reference The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook bridges the gap between scientists, engineers, and medical professionals by creating synergy in the related fields of biomedical engineering, information and communication technology, business, and healthcare.
The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook provides extensive coverage of modern telecommunication in the medical industry, from sensors on and within the body to electronic medical records and beyond. Telemedicine and Electronic Medicine is the first volume of this handbook. Featuring chapters written by leading experts and researchers in their respective fields, this volume: Describes the integration of-and interactions between-modern eMedicine, telemedicine, eHealth, and telehealth practices Explains how medical information flows through wireless technologies and networks, emphasizing fast-deploying wireless body area networks Presents the latest developments in sensors, devices, and implantables, from medical sensors for mobile communication devices to drug-delivery systems Illustrates practical telemedicine applications in telecardiology, teleradiology, teledermatology, teleaudiology, teleoncology, acute care telemedicine, and more The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook bridges the gap between scientists, engineers, and medical professionals by creating synergy in the related fields of biomedical engineering, information and communication technology, business, and healthcare.
The Physiological Measurement Handbook presents an extensive range of topics that encompass the subject of measurement in all departments of medicine. The handbook describes the use of instruments and techniques for practical measurements required in medicine. It covers sensors, techniques, hardware, and software as well as information on processing systems, automatic data acquisition, reduction and analysis, and their incorporation for diagnosis. Suitable for both instrumentation designers and users, the handbook enables biomedical engineers, scientists, researchers, students, health care personnel, and those in the medical device industry to explore the different methods available for measuring a particular physiological variable. It helps readers select the most suitable method by comparing alternative methods and their advantages and disadvantages. In addition, the book provides equations for readers focused on discovering applications and solving diagnostic problems arising in medical fields not necessarily in their specialty. It also includes specialized information needed by readers who want to learn advanced applications of the subject, evaluative opinions, and possible areas for future study.
The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook provides extensive coverage of modern telecommunication in the medical industry, from sensors on and within the body to electronic medical records and beyond. Telehealth and Mobile Health is the second volume of this handbook. Featuring chapters written by leading experts and researchers in their respective fields, this volume: Discusses telesurgery, medical robotics, and image guidance as well as telenursing and remote patient care Describes the implementation of networks, data management, record management, and effective personnel training Explains how the use of new technologies brings many business, management, and service opportunities Provides examples of scientific advancements such as brain-controlled bionic human arms and hands Incorporates clinical applications throughout for practical reference The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook bridges the gap between scientists, engineers, and medical professionals by creating synergy in the related fields of biomedical engineering, information and communication technology, business, and healthcare.
The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 98 existing chapters Covers sensors and sensor technology, time and frequency, signal processing, displays and recorders, and optical, medical, biomedical, health, environmental, electrical, electromagnetic, and chemical variables A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement provides readers with a greater understanding of advanced applications.
The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Spatial, Mechanical, Thermal, and Radiation Measurement volume of the Second Edition
A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Spatial, Mechanical, Thermal, and Radiation Measurement provides readers with a greater understanding of advanced applications.
The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Spatial, Mechanical, Thermal, and Radiation Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 96 existing chapters Covers instrumentation and measurement concepts, spatial and mechanical variables, displacement, acoustics, flow and spot velocity, radiation, wireless sensors and instrumentation, and control and human factors A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Spatial, Mechanical, Thermal, and Radiation Measurement provides readers with a greater understanding of advanced applications.
The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook provides extensive coverage of modern telecommunication in the medical industry, from sensors on and within the body to electronic medical records and beyond. This two-volume set describes how information and communication technologies, the internet, wireless networks, databases, and telemetry permit the transmission and control of information within and between medical centers. Featuring chapters written by leading experts and researchers in their respective fields, this authoritative handbook: Explains how medical personnel use information and communication technologies, sensors, techniques, hardware, and software Discusses wireless data transmission, networks, databases, processing systems, and automatic data acquisition, reduction, and analysis Serves the reference needs of a broad group of users-from advanced high school science students to healthcare and university professionals The first volume, Telemedicine and Electronic Medicine, addresses everything from cloud computing to teleoncology. The second volume, Telehealth and Mobile Heath, discusses topics ranging from telesurgery to biokinematics for mobility. Both volumes incorporate clinical applications throughout for practical reference. The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook bridges the gap between scientists, engineers, and medical professionals by creating synergy in the related fields of biomedical engineering, information and communication technology, business, and healthcare.
Minimally invasive medicine has the goal of providing health care
with minimal trauma. When minimally invasive surgery is utilized,
it reduces the length of hospital stays, lowers costs, lowers pain,
and reduces blood loss. Other minimally invasive techniques
minimize radiation exposure, tissue damage, and drug side effects.
This new edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences; explains sensors and the associated hardware and software; and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Second Edition: Consists of 2 volumes Features contributions from 240+ field experts Contains 53 new chapters, plus updates to all 194 existing chapters Addresses different ways of making measurements for given variables Emphasizes modern intelligent instruments and techniques, human factors, modern display methods, instrument networks, and virtual instruments Explains modern wireless techniques, sensors, measurements, and applications A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition provides readers with a greater understanding of advanced applications.
|
You may like...
The White Queen - The Complete Series
Rebecca Ferguson, Amanda Hale, …
Blu-ray disc
(4)
|