0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (3)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms... Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms (Paperback)
John J. Grefenstette
R1,584 Discovery Miles 15 840 Ships in 10 - 15 working days

First Published in 1987. Routledge is an imprint of Taylor & Francis, an informa company.

Genetic Algorithms for Machine Learning (Hardcover, Reprinted from MACHINE LEARNING, 13:2-3, 1994): John J. Grefenstette Genetic Algorithms for Machine Learning (Hardcover, Reprinted from MACHINE LEARNING, 13:2-3, 1994)
John J. Grefenstette
R4,007 Discovery Miles 40 070 Ships in 18 - 22 working days

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms... Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms (Hardcover)
John J. Grefenstette
R4,102 R3,798 Discovery Miles 37 980 Save R304 (7%) Ships in 10 - 15 working days

First Published in 1987. Routledge is an imprint of Taylor and Francis, an informa company.

Proceedings of the First International Conference on Genetic Algorithms and their Applications (Hardcover): John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications (Hardcover)
John J. Grefenstette
R5,768 Discovery Miles 57 680 Ships in 10 - 15 working days

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.

Proceedings of the First International Conference on Genetic Algorithms and their Applications (Paperback): John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications (Paperback)
John J. Grefenstette
R2,342 Discovery Miles 23 420 Ships in 10 - 15 working days

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.

Genetic Algorithms for Machine Learning (Paperback, Softcover reprint of the original 1st ed. 1994): John J. Grefenstette Genetic Algorithms for Machine Learning (Paperback, Softcover reprint of the original 1st ed. 1994)
John J. Grefenstette
R3,981 Discovery Miles 39 810 Ships in 18 - 22 working days

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Talk Therapy Toolkit - Theory And…
T. Naidu, S. Ramlall Paperback R935 R810 Discovery Miles 8 100
The Pursuit of Peace.
Leonard W. Doob Hardcover R2,814 R2,548 Discovery Miles 25 480
Public Schooling in America - A…
Richard D Van Scotter Hardcover R1,929 R1,728 Discovery Miles 17 280
U.S. Peacefare - Organizing American…
Dane F. Smith Hardcover R1,652 R1,451 Discovery Miles 14 510
Marcus Tullius Cicero - Speeches on…
Andrew R. Dyck Hardcover R3,158 Discovery Miles 31 580
Anzel LED Letter Light (U)
R259 R125 Discovery Miles 1 250
Crawford the Cat - The Good Nighter
Gerald B Reynolds, Russell F Harris Hardcover R470 Discovery Miles 4 700
Wing and Trap Shooting (Legacy Edition…
Charles Askins Hardcover R722 Discovery Miles 7 220
Anzel LED Number Light (0)
R259 R129 Discovery Miles 1 290
The Courage to Change - Saying Goodbye…
Joyce Meyer Paperback R320 R286 Discovery Miles 2 860

 

Partners