0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (3)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms... Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms (Paperback)
John J. Grefenstette
R1,590 Discovery Miles 15 900 Ships in 12 - 19 working days

First Published in 1987. Routledge is an imprint of Taylor & Francis, an informa company.

Genetic Algorithms for Machine Learning (Hardcover, Reprinted from MACHINE LEARNING, 13:2-3, 1994): John J. Grefenstette Genetic Algorithms for Machine Learning (Hardcover, Reprinted from MACHINE LEARNING, 13:2-3, 1994)
John J. Grefenstette
R4,343 Discovery Miles 43 430 Ships in 10 - 15 working days

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms... Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms (Hardcover)
John J. Grefenstette
R4,364 R3,735 Discovery Miles 37 350 Save R629 (14%) Ships in 12 - 19 working days

First Published in 1987. Routledge is an imprint of Taylor and Francis, an informa company.

Proceedings of the First International Conference on Genetic Algorithms and their Applications (Hardcover): John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications (Hardcover)
John J. Grefenstette
R5,831 Discovery Miles 58 310 Ships in 12 - 19 working days

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.

Proceedings of the First International Conference on Genetic Algorithms and their Applications (Paperback): John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications (Paperback)
John J. Grefenstette
R2,365 Discovery Miles 23 650 Ships in 12 - 19 working days

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.

Genetic Algorithms for Machine Learning (Paperback, Softcover reprint of the original 1st ed. 1994): John J. Grefenstette Genetic Algorithms for Machine Learning (Paperback, Softcover reprint of the original 1st ed. 1994)
John J. Grefenstette
R4,315 Discovery Miles 43 150 Ships in 10 - 15 working days

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Shadows in the sand - A Koevoet…
Sisingi Kamongo, Leon Bezuidenhout Paperback R255 R236 Discovery Miles 2 360
Advanced Introduction to Migration…
Ronald Skeldon Hardcover R2,862 Discovery Miles 28 620
Analysis of Clinical Trials Using SAS…
Alex Dmitrienko, Gary G Koch Hardcover R2,868 Discovery Miles 28 680
The Passenger
Cormac McCarthy Paperback R91 Discovery Miles 910
Let's Learn About the Ocean K1…
Paperback R891 Discovery Miles 8 910
Black Men in Science - A Black History…
Bryan Patrick Avery Paperback R245 R223 Discovery Miles 2 230
Life Is Better When You Draw It
Koosje Koene Paperback R838 Discovery Miles 8 380
Tech-Savvy Parenting - A Guide To…
Nikki Bush, Arthur Goldstuck Paperback R150 R139 Discovery Miles 1 390
Physics Is Logic Part II - The Theory of…
Stephen Blaha Hardcover R1,039 Discovery Miles 10 390
In Memoriam: Susan M. (Page) Currier…
unknownauthor Paperback R412 Discovery Miles 4 120

 

Partners