0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Genetic Algorithms for Machine Learning (Hardcover, Reprinted from MACHINE LEARNING, 13:2-3, 1994): John J. Grefenstette Genetic Algorithms for Machine Learning (Hardcover, Reprinted from MACHINE LEARNING, 13:2-3, 1994)
John J. Grefenstette
R4,435 Discovery Miles 44 350 Ships in 10 - 15 working days

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

Genetic Algorithms for Machine Learning (Paperback, Softcover reprint of the original 1st ed. 1994): John J. Grefenstette Genetic Algorithms for Machine Learning (Paperback, Softcover reprint of the original 1st ed. 1994)
John J. Grefenstette
R4,407 Discovery Miles 44 070 Ships in 10 - 15 working days

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

Proceedings of the First International Conference on Genetic Algorithms and their Applications (Paperback): John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications (Paperback)
John J. Grefenstette
R2,594 Discovery Miles 25 940 Ships in 10 - 15 working days

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Eco Chef - Single Camper Induction Stove
R1,500 R1,299 Discovery Miles 12 990
OMC! Totally Wick-ed! Candle Kit
Hinkler Pty Ltd Kit R250 R195 Discovery Miles 1 950
Home Classix Trusty Traveller Mug…
R99 R81 Discovery Miles 810
Amiibo Super Smash Bros. Collection…
R437 Discovery Miles 4 370
Goldair USB Fan (Black | 15cm)
R150 Discovery Miles 1 500
Snookums Large Baby Formula Container
 (2)
R100 R55 Discovery Miles 550
Koh-I-Noor Magic Set of Jumbo Triangular…
 (1)
R2,021 Discovery Miles 20 210
Adidas Hybrid 25 Boxing Gloves (Red)
R491 R409 Discovery Miles 4 090

 

Partners