Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
This book constitutes the refereed proceedings of the 7th International Conference on Intelligent Data Analysis, IDA 2007, held in Ljubljana, Slovenia, September 6-8, 2007. The 33 revised papers presented were carefully reviewed and selected from almost 100 submissions. All current aspects of this interdisciplinary field are addressed; the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.
This book constitutes the thoroughly refereed post-proceedings of the PASCAL (pattern analysis, statistical modelling and computational learning) Statistical and Optimization Perspectives Workshop on Subspace, Latent Structure and Feature Selection techniques, SLSFS 2005. The 9 revised full papers presented together with 5 invited papers reflect the key approaches that have been developed for subspace identification and feature selection using dimension reduction techniques, subspace methods, random projection methods, among others.
This volume contains papers presented at the 17th Annual Conference on Le- ning Theory (previously known as the Conference on Computational Learning Theory) held in Ban?, Canada from July 1 to 4, 2004. The technical program contained 43 papers selected from 107 submissions, 3 open problems selected from among 6 contributed, and 3 invited lectures. The invited lectures were given by Michael Kearns on 'Game Theory, Automated Trading and Social Networks', Moses Charikar on 'Algorithmic Aspects of - nite Metric Spaces', and Stephen Boyd on 'Convex Optimization, Semide?nite Programming, and Recent Applications'. These papers were not included in this volume. The Mark Fulk Award is presented annually for the best paper co-authored by a student. Thisyear theMark Fulk award wassupplemented with two further awards funded by the Machine Learning Journal and the National Information Communication Technology Centre, Australia (NICTA). We were therefore able toselectthreestudentpapersforprizes.ThestudentsselectedwereMagalieF- montforthesingle-authorpaper"ModelSelectionbyBootstrapPenalizationfor Classi?cation", Daniel Reidenbach for the single-author paper "On the Lear- bility of E-Pattern Languages over Small Alphabets", and Ran Gilad-Bachrach for the paper "Bayes and Tukey Meet at the Center Point" (co-authored with Amir Navot and Naftali Tishby).
Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software make it an ideal starting point for further study.
|
You may like...
|