Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Graph Theory and Its Applications, Third Edition is the latest edition of the international, bestselling textbook for undergraduate courses in graph theory, yet it is expansive enough to be used for graduate courses as well. The textbook takes a comprehensive, accessible approach to graph theory, integrating careful exposition of classical developments with emerging methods, models, and practical needs. The authors' unparalleled treatment is an ideal text for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology. Features of the Third Edition Expanded coverage on several topics (e.g., applications of graph coloring and tree-decompositions) Provides better coverage of algorithms and algebraic and topological graph theory than any other text Incorporates several levels of carefully designed exercises that promote student retention and develop and sharpen problem-solving skills Includes supplementary exercises to develop problem-solving skills, solutions and hints, and a detailed appendix, which reviews the textbook's topics About the Authors Jonathan L. Gross is a professor of computer science at Columbia University. His research interests include topology and graph theory. Jay Yellen is a professor of mathematics at Rollins College. His current areas of research include graph theory, combinatorics, and algorithms. Mark Anderson is also a mathematics professor at Rollins College. His research interest in graph theory centers on the topological or algebraic side.
Extensive exercises and applications. Flexibility: appropriate for either a first course at the graduate level; or an advanced course at the undergraduate level. Opens avenues to a variety of research areas in graph theory. Emphasis on topological and algebraic graph theory
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
Graph Theory and Its Applications, Third Edition is the latest edition of the international, bestselling textbook for undergraduate courses in graph theory, yet it is expansive enough to be used for graduate courses as well. The textbook takes a comprehensive, accessible approach to graph theory, integrating careful exposition of classical developments with emerging methods, models, and practical needs. The authors' unparalleled treatment is an ideal text for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology. Features of the Third Edition Expanded coverage on several topics (e.g., applications of graph coloring and tree-decompositions) Provides better coverage of algorithms and algebraic and topological graph theory than any other text Incorporates several levels of carefully designed exercises that promote student retention and develop and sharpen problem-solving skills Includes supplementary exercises to develop problem-solving skills, solutions and hints, and a detailed appendix, which reviews the textbook's topics About the Authors Jonathan L. Gross is a professor of computer science at Columbia University. His research interests include topology and graph theory. Jay Yellen is a professor of mathematics at Rollins College. His current areas of research include graph theory, combinatorics, and algorithms. Mark Anderson is also a mathematics professor at Rollins College. His research interest in graph theory centers on the topological or algebraic side.
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition-over 400 pages longer than its predecessor-incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an extensive guide to the research literature and pointers to monographs. In addition, a glossary is included in each chapter as well as at the end of each section. This edition also contains notes regarding terminology and notation. With 34 new contributors, this handbook is the most comprehensive single-source guide to graph theory. It emphasizes quick accessibility to topics for non-experts and enables easy cross-referencing among chapters.
|
You may like...
|