![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Computational approaches to music composition and style imitation have engaged musicians, music scholars, and computer scientists since the early days of computing. Music generation research has generally employed one of two strategies: knowledge-based methods that model style through explicitly formalized rules, and data mining methods that apply machine learning to induce statistical models of musical style. The five chapters in this book illustrate the range of tasks and design choices in current music generation research applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. The contributions focus on different aspects of modeling and generating music, including melody, chord sequences, ornamentation, and dynamics. Models are induced from audio data or symbolic data. This book was originally published as a special issue of the Journal of Mathematics and Music.
This book constitutes the joint refereed proceedings of the 8th International Workshop on Structural and Syntactic Pattern Recognition and the 3rd International Workshop on Statistical Techniques in Pattern Recognition, SSPR 2000 and SPR 2000, held in Alicante, Spain in August/September 2000. The 52 revised full papers presented together with five invited papers and 35 posters were carefully reviewed and selected from a total of 130 submissions. The book offers topical sections on hybrid and combined methods, document image analysis, grammar and language methods, structural matching, graph-based methods, shape analysis, clustering and density estimation, object recognition, general methodology, and feature extraction and selection.
Computational approaches to music composition and style imitation have engaged musicians, music scholars, and computer scientists since the early days of computing. Music generation research has generally employed one of two strategies: knowledge-based methods that model style through explicitly formalized rules, and data mining methods that apply machine learning to induce statistical models of musical style. The five chapters in this book illustrate the range of tasks and design choices in current music generation research applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. The contributions focus on different aspects of modeling and generating music, including melody, chord sequences, ornamentation, and dynamics. Models are induced from audio data or symbolic data. This book was originally published as a special issue of the Journal of Mathematics and Music.
|
You may like...
Guide to Intelligent Data Science - How…
Michael R. Berthold, Christian Borgelt, …
Hardcover
R1,269
Discovery Miles 12 690
Ensemble Machine Learning - Methods and…
Cha Zhang, Yunqian Ma
Hardcover
R5,863
Discovery Miles 58 630
Pearson REVISE Edexcel GCSE Computer…
Ann Weidmann, Cynthia Selby
Paperback
R252
Discovery Miles 2 520
|