0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Pattern Mining with Evolutionary Algorithms (Hardcover, 1st ed. 2016): Sebastian Ventura, Jose Maria Luna Pattern Mining with Evolutionary Algorithms (Hardcover, 1st ed. 2016)
Sebastian Ventura, Jose Maria Luna
R3,504 Discovery Miles 35 040 Ships in 12 - 19 working days

This book provides a comprehensive overview of the field of pattern mining with evolutionary algorithms. To do so, it covers formal definitions about patterns, patterns mining, type of patterns and the usefulness of patterns in the knowledge discovery process. As it is described within the book, the discovery process suffers from both high runtime and memory requirements, especially when high dimensional datasets are analyzed. To solve this issue, many pruning strategies have been developed. Nevertheless, with the growing interest in the storage of information, more and more datasets comprise such a dimensionality that the discovery of interesting patterns becomes a challenging process. In this regard, the use of evolutionary algorithms for mining pattern enables the computation capacity to be reduced, providing sufficiently good solutions. This book offers a survey on evolutionary computation with particular emphasis on genetic algorithms and genetic programming. Also included is an analysis of the set of quality measures most widely used in the field of pattern mining with evolutionary algorithms. This book serves as a review of the most important evolutionary algorithms for pattern mining. It considers the analysis of different algorithms for mining different type of patterns and relationships between patterns, such as frequent patterns, infrequent patterns, patterns defined in a continuous domain, or even positive and negative patterns. A completely new problem in the pattern mining field, mining of exceptional relationships between patterns, is discussed. In this problem the goal is to identify patterns which distribution is exceptionally different from the distribution in the complete set of data records. Finally, the book deals with the subgroup discovery task, a method to identify a subgroup of interesting patterns that is related to a dependent variable or target attribute. This subgroup of patterns satisfies two essential conditions: interpretability and interestingness.

Supervised Descriptive Pattern Mining (Hardcover, 1st ed. 2018): Sebastian Ventura, Jose Maria Luna Supervised Descriptive Pattern Mining (Hardcover, 1st ed. 2018)
Sebastian Ventura, Jose Maria Luna
R2,877 Discovery Miles 28 770 Ships in 10 - 15 working days

This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.

Pattern Mining with Evolutionary Algorithms (Paperback, Softcover reprint of the original 1st ed. 2016): Sebastian Ventura,... Pattern Mining with Evolutionary Algorithms (Paperback, Softcover reprint of the original 1st ed. 2016)
Sebastian Ventura, Jose Maria Luna
R3,407 Discovery Miles 34 070 Ships in 10 - 15 working days

This book provides a comprehensive overview of the field of pattern mining with evolutionary algorithms. To do so, it covers formal definitions about patterns, patterns mining, type of patterns and the usefulness of patterns in the knowledge discovery process. As it is described within the book, the discovery process suffers from both high runtime and memory requirements, especially when high dimensional datasets are analyzed. To solve this issue, many pruning strategies have been developed. Nevertheless, with the growing interest in the storage of information, more and more datasets comprise such a dimensionality that the discovery of interesting patterns becomes a challenging process. In this regard, the use of evolutionary algorithms for mining pattern enables the computation capacity to be reduced, providing sufficiently good solutions. This book offers a survey on evolutionary computation with particular emphasis on genetic algorithms and genetic programming. Also included is an analysis of the set of quality measures most widely used in the field of pattern mining with evolutionary algorithms. This book serves as a review of the most important evolutionary algorithms for pattern mining. It considers the analysis of different algorithms for mining different type of patterns and relationships between patterns, such as frequent patterns, infrequent patterns, patterns defined in a continuous domain, or even positive and negative patterns. A completely new problem in the pattern mining field, mining of exceptional relationships between patterns, is discussed. In this problem the goal is to identify patterns which distribution is exceptionally different from the distribution in the complete set of data records. Finally, the book deals with the subgroup discovery task, a method to identify a subgroup of interesting patterns that is related to a dependent variable or target attribute. This subgroup of patterns satisfies two essential conditions: interpretability and interestingness.

Supervised Descriptive Pattern Mining (Paperback, Softcover reprint of the original 1st ed. 2018): Sebastian Ventura, Jose... Supervised Descriptive Pattern Mining (Paperback, Softcover reprint of the original 1st ed. 2018)
Sebastian Ventura, Jose Maria Luna
R3,119 Discovery Miles 31 190 Ships in 10 - 15 working days

This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Ring from the Ruins
Julia Edwards Paperback R324 Discovery Miles 3 240
Memorial Book of Radzivilov…
Ya'acov Adini, Ellen Garshick Hardcover R1,228 Discovery Miles 12 280
ABC's Of Finance
Chantal Gregory Hardcover R715 R637 Discovery Miles 6 370
Anne of Green Gables
Lucy Maud Montgomery Hardcover R782 Discovery Miles 7 820
Silly Sausage's Birthday (AU hard cover…
Simon Hardcover R559 Discovery Miles 5 590
Saving the Unicorn's Horn
Julia Edwards Paperback R275 Discovery Miles 2 750
Whey Supreme Lean Muscle Protein Vanilla…
R299 Discovery Miles 2 990
The Smarts Build Wealth
Gwendolyn Washington Hardcover R532 Discovery Miles 5 320
Collagen Hot Chocolate
R139 Discovery Miles 1 390
Take It One Brick at a Time
Danielle Myrie Hardcover R526 Discovery Miles 5 260

 

Partners