Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 16 of 16 matches in All Departments
This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.
This book discusses how to build optimization tools able to generate better future studies. It aims at showing how these tools can be used to develop an adaptive learning environment that can be used for decision making in the presence of uncertainties. The book starts with existing fuzzy techniques and multicriteria decision making approaches and shows how to combine them in more effective tools to model future events and take therefore better decisions. The first part of the book is dedicated to the theories behind fuzzy optimization and fuzzy cognitive map, while the second part presents new approaches developed by the authors with their practical application to trend impact analysis, scenario planning and strategic formulation. The book is aimed at two groups of readers, interested in linking the future studies with artificial intelligence. The first group includes social scientists seeking for improved methods for strategic prospective. The second group includes computer scientists and engineers seeking for new applications and current developments of Soft Computing methods for forecasting in social science, but not limited to this.
(Preliminary) The book is a comprehensive collection of the most recent and significant research and applications in the field of fuzzy logic. It covers fuzzy structures, systems, rules, operations as well as important applications, e.g in decision making, environmental prediction and prevention, and communication. It is dedicated to Enric Trillas as an acknowledgement for his pioneering research in the field. The book include a foreword by Lotfi A. Zadeh.
The aim of this volume is to show how Fuzzy Sets and Systems can help to provide robust and adaptive heuristic optimization algorithms in a variety of situations. The book presents the state of the art and gives a broad overview on the real practical applications that Fuzzy Sets, based on heuristic algorithms, have.
This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.
Uncertainty exists almost everywhere, except in the most idealized situations; it is not only an inevitable and ubiquitous phenomenon, but also a fundamental sci- ti?c principle. Furthermore, uncertainty is an attribute of information and, usually, decision-relevant information is uncertain and/or imprecise, therefore the abilities to handle uncertain information and to reason from incomplete knowledge are c- cial features of intelligent behaviour in complex and dynamic environments. By carefully exploiting our tolerance for imprecision and approximation we can often achieve tractability, robustness, and better descriptions of reality than traditional - ductive methods would allow us to obtain. In conclusion, as we move further into the ageofmachineintelligence, theproblemofreasoningunderuncertainty, in other words, drawing conclusions from partial knowledge, has become a major research theme. Not surprisingly, the rigoroustreatment of uncertaintyrequiressophisticated - chinery, and the present volume is conceived as a contribution to a better und- standing of the foundations of information processing and decision-making in an environment of uncertainty, imprecision and partiality of truth. This volume draws on papers presented at the 2008 Conference on Information Processing and Management of Uncertainty (IPMU), held in Malaga, Spain, or- nized by the University of Mal aga. The conference brought together some of the world's leading experts in the study of uncertainty."
This book presents computational intelligence methodologies and its applications to sustainable development goals. Along 18 chapters prepared by reputed scientists around the world, this book explores and focuses on the impacts produced by the application of artificial intelligence and mainly of computational intelligence, in sustainable development goals and on analysing how particularly computational intelligence can influence the ability to comply in a timely manner with all the sustainable development goals. Specialists from STEM areas will find in this book an attractive showcase of instances and research lines to be explored.
The book offers a comprehensive, practice-oriented introduction to the field of fuzzy mathematical programming (FMP) as key topic of modern analytics. FMP plays a fundamental role in dealing with a varied range of problems, such as those concerning smart cities, sustainability, and renewable energies. This book includes an introduction to the basic concepts, together with extensive information on the computational-intelligence-based optimization models and techniques that have been used to date. Special emphasis is given to fuzzy transportation problems. The book is a valuable resource for researchers, data scientists and practitioners dealing with computational-intelligence-based optimization models for analytics.
This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.
This book discusses how to build optimization tools able to generate better future studies. It aims at showing how these tools can be used to develop an adaptive learning environment that can be used for decision making in the presence of uncertainties. The book starts with existing fuzzy techniques and multicriteria decision making approaches and shows how to combine them in more effective tools to model future events and take therefore better decisions. The first part of the book is dedicated to the theories behind fuzzy optimization and fuzzy cognitive map, while the second part presents new approaches developed by the authors with their practical application to trend impact analysis, scenario planning and strategic formulation. The book is aimed at two groups of readers, interested in linking the future studies with artificial intelligence. The first group includes social scientists seeking for improved methods for strategic prospective. The second group includes computer scientists and engineers seeking for new applications and current developments of Soft Computing methods for forecasting in social science, but not limited to this.
This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cadiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).
This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cadiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).
This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cadiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).
(Preliminary) The book is a comprehensive collection of the most recent and significant research and applications in the field of fuzzy logic. It covers fuzzy structures, systems, rules, operations as well as important applications, e.g in decision making, environmental prediction and prevention, and communication. It is dedicated to Enric Trillas as an acknowledgement for his pioneering research in the field. The book include a foreword by Lotfi A. Zadeh.
Uncertainty exists almost everywhere, except in the most idealized situations; it is not only an inevitable and ubiquitous phenomenon, but also a fundamental sci- ti?c principle. Furthermore, uncertainty is an attribute of information and, usually, decision-relevant information is uncertain and/or imprecise, therefore the abilities to handle uncertain information and to reason from incomplete knowledge are c- cial features of intelligent behaviour in complex and dynamic environments. By carefully exploiting our tolerance for imprecision and approximation we can often achieve tractability, robustness, and better descriptions of reality than traditional - ductive methods would allow us to obtain. In conclusion, as we move further into the ageofmachineintelligence, theproblemofreasoningunderuncertainty, in other words, drawing conclusions from partial knowledge, has become a major research theme. Not surprisingly, the rigoroustreatment of uncertaintyrequiressophisticated - chinery, and the present volume is conceived as a contribution to a better und- standing of the foundations of information processing and decision-making in an environment of uncertainty, imprecision and partiality of truth. This volume draws on papers presented at the 2008 Conference on Information Processing and Management of Uncertainty (IPMU), held in Malaga, Spain, or- nized by the University of Mal aga. The conference brought together some of the world's leading experts in the study of uncertainty."
The aim of this volume is to show how Fuzzy Sets and Systems can help to provide robust and adaptive heuristic optimization algorithms in a variety of situations. The book presents the state of the art and gives a broad overview on the real practical applications that Fuzzy Sets, based on heuristic algorithms, have.
|
You may like...
|