![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
Deep learning from the ground up using R and the powerful Keras library! In Deep Learning with R, Second Edition you will learn: Deep learning from first principles Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation Deep Learning with R, Second Edition shows you how to put deep learning into action. It's based on the revised new edition of Francois Chollet's bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks. about the technology Deep learning has become essential knowledge for data scientists, researchers, and software developers. The R language APIs for Keras and TensorFlow put deep learning within reach for all R users, even if they have no experience with advanced machine learning or neural networks. This book shows you how to get started on core DL tasks like computer vision, natural language processing, and more using R. what's inside Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation about the reader For readers with intermediate R skills. No previous experience with Keras, TensorFlow, or deep learning is required.
Description Artificial intelligence has made some incredible leaps. Deep learning systems now deliver near-human speech and image recognition, not to mention machines capable of beating world champion Go masters. Deep learning applies to a widening range of problems, such as question answering, machine translation, and optical character recognition. It's behind photo tagging, self-driving cars, virtual assistants and other previously impossible applications. Deep Learning with R is for developers and data scientists with some R experience who want to use deep learning to solve real-world problems. The book is structured around a series of practical examples that introduce each new concept and demonstrate best practices. You'll begin by learning what deep learning is, how it connects with AI and Machine Learning, and why it's rapidly gaining in importance right now. You'll then dive into practical applications of computer vision, natural language processing, and more. Key features * Understand key machine learning concepts * Set up a computer environment for deep learning * Visualize neural networks * Use recurrent neural networks for text and sequence Classification Audience You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is required. About the technology Although deep learning can be a challenging subject, new technologies make it much easier to get started than ever before. The Keras deep learning library featured in this book puts ease of use and accessibility front and center, making it a great fit for new practitioners.
|
![]() ![]() You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Every Day Is An Opening Night - Our…
Des & Dawn Lindberg
Paperback
![]()
|