![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
Semantic Video Object Segmentation for Content-Based Multimedia Applications provides a thorough review of state-of-the-art techniques as well as describing several novel ideas and algorithms for semantic object extraction from image sequences. Semantic object extraction is an essential element in content-based multimedia services, such as the newly developed MPEG4 and MPEG7 standards. An interactive system called SIVOG (Smart Interactive Video Object Generation) is presented, which converts user's semantic input into a form that can be conveniently integrated with low-level video processing. Thus, high-level semantic information and low-level video features are integrated seamlessly into a smart segmentation system. A region and temporal adaptive algorithm was further proposed to improve the efficiency of the SIVOG system so that it is feasible to achieve nearly real-time video object segmentation with robust and accurate performances. Also included is an examination of the shape coding problem and the object segmentation problem simultaneously. Semantic Video Object Segmentation for Content-Based Multimedia Applications will be of great interest to research scientists and graduate-level students working in the area of content-based multimedia representation and applications and its related fields.
Semantic Video Object Segmentation for Content-Based Multimedia Applications provides a thorough review of state-of-the-art techniques as well as describing several novel ideas and algorithms for semantic object extraction from image sequences. Semantic object extraction is an essential element in content-based multimedia services, such as the newly developed MPEG4 and MPEG7 standards. An interactive system called SIVOG (Smart Interactive Video Object Generation) is presented, which converts user's semantic input into a form that can be conveniently integrated with low-level video processing. Thus, high-level semantic information and low-level video features are integrated seamlessly into a smart segmentation system. A region and temporal adaptive algorithm was further proposed to improve the efficiency of the SIVOG system so that it is feasible to achieve nearly real-time video object segmentation with robust and accurate performances. Also included is an examination of the shape coding problem and the object segmentation problem simultaneously. Semantic Video Object Segmentation for Content-Based Multimedia Applications will be of great interest to research scientists and graduate-level students working in the area of content-based multimedia representation and applications and its related fields.
|
You may like...
Handbook of Himalayan Ecosystems and…
Bikash Ranjan Parida, Arvind Chandra Pandey, …
Hardcover
R9,524
Discovery Miles 95 240
Sand Dunes of the Northern Hemisphere…
Qi Lu, Mahesh K. Gaur, …
Hardcover
R4,920
Discovery Miles 49 200
Brooklyn's Bushwick - Urban Renewal in…
Raymond Charles Rauscher, Salim Momtaz
Hardcover
R3,296
Discovery Miles 32 960
|