0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Bayesian Programming (Paperback): Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha Bayesian Programming (Paperback)
Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha
R1,515 Discovery Miles 15 150 Ships in 10 - 15 working days

Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and AlgorithmsThe third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQsAlong with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian ComputerA new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Bayesian Programming (Hardcover, New): Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha Bayesian Programming (Hardcover, New)
Pierre Bessiere, Emmanuel Mazer, Juan Ahuactzin, Kamel Mekhnacha
R4,224 Discovery Miles 42 240 Ships in 10 - 15 working days

Probability as an Alternative to Boolean Logic
While logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data.

Decision-Making Tools and Methods for Incomplete and Uncertain Data
Emphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming.

Principles and Modeling
Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields.

Formalism and Algorithms
The third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems.

FAQs
Along with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability.

The First Steps toward a Bayesian Computer
A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Nuclear Juggernaut - The transport of…
Martin Bond Paperback R1,413 Discovery Miles 14 130
My Eerste Kunsboek - Blou
Mario Boon Paperback R70 R65 Discovery Miles 650
In Situ Hybridization - Principles and…
Julia M. Polak, James O.D. McGee Hardcover R7,556 Discovery Miles 75 560
Evolving Software Systems
Tom Mens, Alexander Serebrenik, … Hardcover R3,539 Discovery Miles 35 390
Open Scientific Data - Why Choosing and…
Vera J. Lipton Hardcover R3,095 Discovery Miles 30 950
Smart Cities in Application…
Stan McClellan Hardcover R2,202 Discovery Miles 22 020
Conceptual Modeling Perspectives
Jordi Cabot, Cristina Gomez, … Hardcover R3,645 R3,384 Discovery Miles 33 840
Vincent de Paul, the Lazarist Mission…
Alison Forrestal Hardcover R3,392 Discovery Miles 33 920
Separation Techniques in Nuclear Waste…
Boris F. Myasoedov Paperback R1,977 Discovery Miles 19 770
As If By Magic - Selected Poems
Paula Meehan Hardcover R844 Discovery Miles 8 440

 

Partners