Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book introduces a new, state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations; much of the text is dedicated to the application of this method to a wide class of nonlinear diffusion equations. The underlying theory hinges on a new stability result, formulated in the abstract setting of infinite-dimensional dynamical systems, which states that under certain hypotheses, the omega-limit set of a perturbed dynamical system is stable under arbitrary asymptotically small perturbations.The Stability Theorem is examined in detail in the first chapter, followed by a review of basic results and methods---many original to the authors---for the solution of nonlinear diffusion equations. Further chapters provide a self-contained analysis of specific equations, with carefully-constructed theorems, proofs, and references. In addition to the derivation of interesting limiting behaviors, the book features a variety of estimation techniques for solutions of semi- and quasilinear parabolic equations.Written by established mathematicians at the forefront of the field, this work is a blend of delicate analysis and broad application
This text is concerned with the quantitative aspects of the theory
of nonlinear diffusion equations; equations which can be seen as
nonlinear variations of the classical heat equation. They appear as
mathematical models in different branches of Physics, Chemistry,
Biology, and Engineering, and are also relevant in differential
geometry and relativistic physics. Much of the modern theory of
such equations is based on estimates and functional analysis.
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.
Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems. The authors are some of the most well-known mathematicians in this innovative field, which is presently undergoing rapid development. The intended audience includes experts in elliptic and parabolic equations who are interested in extending their expertise to the nonlinear setting, as well as Ph.D. or postdoctoral students who want to enter into the most promising research topics in the field.
The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heat equation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, and other fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.
|
You may like...
|