Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Many aspects of Nature, Biology or even from Society have become part of the techniques and algorithms used in computer science or they have been used to enhance or hybridize several techniques through the inclusion of advanced evolution, cooperation or biologically based additions. The previous NICSO workshops were held in Granada, Spain, 2006, Acireale, Italy, 2007, and in Tenerife, Spain, 2008. As in the previous editions, NICSO 2010, held in Granada, Spain, was conceived as a forum for the latest ideas and the state of the art research related to nature inspired cooperative strategies. The contributions collected in this book cover topics including nature-inspired techniques like Genetic Algorithms, Evolutionary Algorithms, Ant and Bee Colonies, Swarm Intelligence approaches, Neural Networks, several Cooperation Models, Structures and Strategies, Agents Models, Social Interactions, as well as new algorithms based on the behaviour of fireflies or bats.
After the great expansion of genome-wide association studies, their scientific methodology and, notably, their data analysis has matured in recent years, and they are a keystone in large epidemiological studies. Newcomers to the field are confronted with a wealth of data, resources and methods. This book presents current methods to perform informative analyses using real and illustrative data with established bioinformatics tools and guides the reader through the use of publicly available data. Includes clear, readable programming codes for readers to reproduce and adapt to their own data. Emphasises extracting biologically meaningful associations between traits of interest and genomic, transcriptomic and epigenomic data Uses up-to-date methods to exploit omic data Presents methods through specific examples and computing sessions Supplemented by a website, including code, datasets, and solutions
Many aspects of Nature, Biology or even from Society have become part of the techniques and algorithms used in computer science or they have been used to enhance or hybridize several techniques through the inclusion of advanced evolution, cooperation or biologically based additions. The previous NICSO workshops were held in Granada, Spain, 2006, Acireale, Italy, 2007, and in Tenerife, Spain, 2008. As in the previous editions, NICSO 2010, held in Granada, Spain, was conceived as a forum for the latest ideas and the state of the art research related to nature inspired cooperative strategies. The contributions collected in this book cover topics including nature-inspired techniques like Genetic Algorithms, Evolutionary Algorithms, Ant and Bee Colonies, Swarm Intelligence approaches, Neural Networks, several Cooperation Models, Structures and Strategies, Agents Models, Social Interactions, as well as new algorithms based on the behaviour of fireflies or bats.
After the great expansion of genome-wide association studies, their scientific methodology and, notably, their data analysis has matured in recent years, and they are a keystone in large epidemiological studies. Newcomers to the field are confronted with a wealth of data, resources and methods. This book presents current methods to perform informative analyses using real and illustrative data with established bioinformatics tools and guides the reader through the use of publicly available data. Includes clear, readable programming codes for readers to reproduce and adapt to their own data. Emphasises extracting biologically meaningful associations between traits of interest and genomic, transcriptomic and epigenomic data Uses up-to-date methods to exploit omic data Presents methods through specific examples and computing sessions Supplemented by a website, including code, datasets, and solutions
The aim of this book is to show how to analyze survival data with the presence of recurrent events applied to cancer settings. Throughout, the emphasis is on presenting analysis of real data. Many of the models discussed are those widely used in this area. In addition, a new model specially designed for analyzing cancer data is presented. Modern techniques such as penalized likelihood approach, nonparametric smoothig and bootstrapping are developed and used when appropriate. The author, jointly with other colleagues, has written three R packages, freely available at CRAN (http:://www.r-project.org) designed to analyze recurrent event data: gcmrec, survrec and frailtypack. These packages also contain the real data sets analyzed in this book. Each chapter of this book ends with an illustration of how to use these packages to fit models. These analyses should help biostatisticians, clinicians or medical doctors to analyze their own data arising form studies where the main aim is to describe those clinical factors that are associated with the time until a new event occurs taking into account the repeated nature of the data.
|
You may like...
|