![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Classical boundary integral equations arising from the potential theory and acoustics (Laplace and Helmholtz equations) are derived. Using the parametrization of the boundary these equations take a form of periodic pseudodifferential equations. A general theory of periodic pseudodifferential equations and methods of solving are developed, including trigonometric Galerkin and collocation methods, their fully discrete versions with fast solvers, quadrature and spline based methods. The theory of periodic pseudodifferential operators is presented in details, with preliminaries (Fredholm operators, periodic distributions, periodic Sobolev spaces) and full proofs. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
An attractive book on the intersection of analysis and numerical analysis, deriving classical boundary integral equations arising from the potential theory and acoustics. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.
|
![]() ![]() You may like...
|