Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Swiftly build and deploy machine learning models without managing infrastructure and boost productivity using the latest Amazon SageMaker capabilities such as Studio, Autopilot, Data Wrangler, Pipelines, and Feature Store Key Features Build, train, and deploy machine learning models quickly using Amazon SageMaker Optimize the accuracy, cost, and fairness of your models Create and automate end-to-end machine learning workflows on Amazon Web Services (AWS) Book DescriptionAmazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more. You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learn Become well-versed with data annotation and preparation techniques Use AutoML features to build and train machine learning models with AutoPilot Create models using built-in algorithms and frameworks and your own code Train computer vision and natural language processing (NLP) models using real-world examples Cover training techniques for scaling, model optimization, model debugging, and cost optimization Automate deployment tasks in a variety of configurations using SDK and several automation tools Who this book is forThis book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.
Work through interesting real-life business use cases to uncover valuable insights from unstructured text using AWS AI services Key Features Get to grips with AWS AI services for NLP and find out how to use them to gain strategic insights Run Python code to use Amazon Textract and Amazon Comprehend to accelerate business outcomes Understand how you can integrate human-in-the-loop for custom NLP use cases with Amazon A2I Book DescriptionNatural language processing (NLP) uses machine learning to extract information from unstructured data. This book will help you to move quickly from business questions to high-performance models in production. To start with, you'll understand the importance of NLP in today's business applications and learn the features of Amazon Comprehend and Amazon Textract to build NLP models using Python and Jupyter Notebooks. The book then shows you how to integrate AI in applications for accelerating business outcomes with just a few lines of code. Throughout the book, you'll cover use cases such as smart text search, setting up compliance and controls when processing confidential documents, real-time text analytics, and much more to understand various NLP scenarios. You'll deploy and monitor scalable NLP models in production for real-time and batch requirements. As you advance, you'll explore strategies for including humans in the loop for different purposes in a document processing workflow. Moreover, you'll learn best practices for auto-scaling your NLP inference for enterprise traffic. Whether you're new to ML or an experienced practitioner, by the end of this NLP book, you'll have the confidence to use AWS AI services to build powerful NLP applications. What you will learn Automate various NLP workflows on AWS to accelerate business outcomes Use Amazon Textract for text, tables, and handwriting recognition from images and PDF files Gain insights from unstructured text in the form of sentiment analysis, topic modeling, and more using Amazon Comprehend Set up end-to-end document processing pipelines to understand the role of humans in the loop Develop NLP-based intelligent search solutions with just a few lines of code Create both real-time and batch document processing pipelines using Python Who this book is forIf you're an NLP developer or data scientist looking to get started with AWS AI services to implement various NLP scenarios quickly, this book is for you. It will show you how easy it is to integrate AI in applications with just a few lines of code. A basic understanding of machine learning (ML) concepts is necessary to understand the concepts covered. Experience with Jupyter notebooks and Python will be helpful.
Quickly build and deploy machine learning models without managing infrastructure, and improve productivity using Amazon SageMaker's capabilities such as Amazon SageMaker Studio, Autopilot, Experiments, Debugger, and Model Monitor Key Features Build, train, and deploy machine learning models quickly using Amazon SageMaker Analyze, detect, and receive alerts relating to various business problems using machine learning algorithms and techniques Improve productivity by training and fine-tuning machine learning models in production Book DescriptionAmazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You'll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you'll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You'll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you'll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learn Create and automate end-to-end machine learning workflows on Amazon Web Services (AWS) Become well-versed with data annotation and preparation techniques Use AutoML features to build and train machine learning models with AutoPilot Create models using built-in algorithms and frameworks and your own code Train computer vision and NLP models using real-world examples Cover training techniques for scaling, model optimization, model debugging, and cost optimization Automate deployment tasks in a variety of configurations using SDK and several automation tools Who this book is forThis book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. Some understanding of machine learning concepts and the Python programming language will also be beneficial.
|
You may like...
|