Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Is mathematics 'entangled' with its various formalisations? Or are the central concepts of mathematics largely insensitive to formalisation, or 'formalism free'? What is the semantic point of view and how is it implemented in foundational practice? Does a given semantic framework always have an implicit syntax? Inspired by what she calls the 'natural language moves' of Goedel and Tarski, Juliette Kennedy considers what roles the concepts of 'entanglement' and 'formalism freeness' play in a range of logical settings, from computability and set theory to model theory and second order logic, to logicality, developing an entirely original philosophy of mathematics along the way. The treatment is historically, logically and set-theoretically rich, and topics such as naturalism and foundations receive their due, but now with a new twist.
Is mathematics 'entangled' with its various formalisations? Or are the central concepts of mathematics largely insensitive to formalisation, or 'formalism free'? What is the semantic point of view and how is it implemented in foundational practice? Does a given semantic framework always have an implicit syntax? Inspired by what she calls the 'natural language moves' of Goedel and Tarski, Juliette Kennedy considers what roles the concepts of 'entanglement' and 'formalism freeness' play in a range of logical settings, from computability and set theory to model theory and second order logic, to logicality, developing an entirely original philosophy of mathematics along the way. The treatment is historically, logically and set-theoretically rich, and topics such as naturalism and foundations receive their due, but now with a new twist.
This Element takes a deep dive into Goedel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Goedel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.
The logician Kurt Goedel (1906-1978) published a paper in 1931 formulating what have come to be known as his 'incompleteness theorems', which prove, among other things, that within any formal system with resources sufficient to code arithmetic, questions exist which are neither provable nor disprovable on the basis of the axioms which define the system. These are among the most celebrated results in logic today. In this volume, leading philosophers and mathematicians assess important aspects of Goedel's work on the foundations and philosophy of mathematics. Their essays explore almost every aspect of Godel's intellectual legacy including his concepts of intuition and analyticity, the Completeness Theorem, the set-theoretic multiverse, and the state of mathematical logic today. This groundbreaking volume will be invaluable to students, historians, logicians and philosophers of mathematics who wish to understand the current thinking on these issues.
Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the 24th Workshop on Logic, Language, Information and Communication, WoLLIC 2017, held in London, UK, in August 2017. The 28 contributed papers were carefully reviewed and selected from 61 submissions. They cover interdisciplinary research in pure and applied logic, aiming at interactions between logic and the sciences related to information and computation.
The logician Kurt Goedel (1906-1978) published a paper in 1931 formulating what have come to be known as his 'incompleteness theorems', which prove, among other things, that within any formal system with resources sufficient to code arithmetic, questions exist which are neither provable nor disprovable on the basis of the axioms which define the system. These are among the most celebrated results in logic today. In this volume, leading philosophers and mathematicians assess important aspects of Goedel's work on the foundations and philosophy of mathematics. Their essays explore almost every aspect of Godel's intellectual legacy including his concepts of intuition and analyticity, the Completeness Theorem, the set-theoretic multiverse, and the state of mathematical logic today. This groundbreaking volume will be invaluable to students, historians, logicians and philosophers of mathematics who wish to understand the current thinking on these issues.
This collection of papers from various areas of mathematical logic showcases the remarkable breadth and richness of the field. Leading authors reveal how contemporary technical results touch upon foundational questions about the nature of mathematics. Highlights of the volume include: a history of Tennenbaum's theorem in arithmetic; a number of papers on Tennenbaum phenomena in weak arithmetics as well as on other aspects of arithmetics, such as interpretability; the transcript of Goedel's previously unpublished 1972-1975 conversations with Sue Toledo, along with an appreciation of the same by Curtis Franks; Hugh Woodin's paper arguing against the generic multiverse view; Anne Troelstra's history of intuitionism through 1991; and Aki Kanamori's history of the Suslin problem in set theory. The book provides a historical and philosophical treatment of particular theorems in arithmetic and set theory, and is ideal for researchers and graduate students in mathematical logic and philosophy of mathematics.
|
You may like...
Labour Relations in South Africa
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
|