Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This book focuses on broadly defined areas of chemical information science- with special emphasis on chemical informatics- and computer-aided molecular design. The computational and cheminformatics methods discussed, and their application to drug discovery, are essential for sustaining a viable drug development pipeline. It is increasingly challenging to identify new chemical entities and the amount of money and time invested in research to develop a new drug has greatly increased over the past 50 years. The average time to take a drug from clinical testing to approval is currently 7.2 years. Therefore, the need to develop predictive computational techniques to drive research more efficiently to identify compounds and molecules, which have the greatest likelihood of being developed into successful drugs for a target, is of great significance. New methods such as high throughput screening (HTS) and techniques for the computational analysis of hits have contributed to improvements in drug discovery efficiency. The SARMs developed by Jurgen and colleagues have enabled display of SAR data in a more transparent scaffold/functional SAR table. There are many tools and databases available for use in applied drug discovery techniques based on polypharmacology. The cheminformatics approaches and methodologies presented in this volume and at the Skolnik Award Symposium will pave the way for improved efficiency in drug discovery. The lectures and the chapters also reflect the various aspects of scientific enquiry and research interests of the 2015 Herman Skolnik award recipient.
In the literature, several terms are used synonymously to name the topic of this book: chem-, chemi-, or chemo-informatics. A widely recognized de- nition of this discipline is the one by Frank Brown from 1998 (1) who defined chemoinformatics as the combination of "all the information resources that a scientist needs to optimize the properties of a ligand to become a drug. " In Brown's definition, two aspects play a fundamentally important role: de- sion support by computational means and drug discovery, which distinguishes it from the term "chemical informatics" that was introduced at least ten years earlier and described as the application of information technology to ch- istry (not with a specific focus on drug discovery). In addition, there is of course "chemometrics," which is generally understood as the application of statistical methods to chemical data and the derivation of relevant statistical models and descriptors (2). The pharmaceutical focus of many developments and efforts in this area-and the current popularity of gene-to-drug or si- lar paradigms-is further reflected by the recent introduction of such terms as "discovery informatics" (3), which takes into account that gaining kno- edge from chemical data alone is not sufficient to be ultimately successful in drug discovery. Such insights are well in accord with other views that the boundaries between bio- and chemoinformatics are fluid and that these d- ciplines should be closely combined or merged to significantly impact b- technology or pharmaceutical research (4).
Over the past years, the chem(o)informatics field has further evolved and new application areas have opened up, for example, in the broadly defined area of chemical biology. In Chemoinformatics and Computational Chemical Biology, leading investigators bring together a detailed series of reviews and methods including, among others, system-directed approaches using small molecules, the design of target-focused compound libraries, the study of molecular selectivity, and the systematic analysis of target-ligand interactions. Furthermore, the book delves into similarity methods, machine learning, probabilistic approaches, fragment-based methods, as well as topics that go beyond the current chemoinformatics spectrum, such as knowledge-based modeling of G protein-coupled receptor structures and computational design of siRNA libraries. As a volume in the highly successful Methods in Molecular Biology (TM) series, this collection provides detailed descriptions and implementation advice that are exceedingly relevant for basic researchers and practitioners in this highly interdisciplinary research and development area. Cutting-edge and unambiguous, Chemoinformatics and Computational Chemical Biology serves as an ideal guide for experts and newcomers alike to this vital and dynamic field of study.
Chemoinformatics: Theory, Practice & Products covers theory, commercially available packages and applications of Chemoinformatics. Chemoinformatics is broadly defined as the use of information technology to assist in the acquisition, analysis and management of data and information relating to chemical compounds and their properties. This ranges from molecular modelling, to reactions, to spectra, to structure-activity relationships associated with chemicals. Computational scientists, chemists, and biologists all rely on the rapidly evolving field of Chemoinformatics. Chemoinformatics: Theory, Practice & Products is an essential handbook for determining the right Chemoinformatics method or technology to use. There has been an explosion of new Chemoinformatics tools and techniques. Each technique has its own utility, scope, and limitations, as well as meeting resistance to use by experimentalists. The purpose of Chemoinformatics: Theory, Practice & Products is to provide computational scientists, medicinal chemists and biologists with unique practical information and the underlying theories relating to modern Chemoinformatics and related drug discovery informatics technologies. The book also provides a summary of currently available, state-of-the-art, commercial Chemoinformatics products, with a specific focus on databases, toolkits, and modelling technologies designed for drug discovery. It will be broadly useful as a reference text for experimentalists wishing to rapidly navigate the expanding field, as well as the more expert computational scientists wishing to stay up to date. It is primarily intended for applied researchers from the chemical and pharmaceuticalindustry, academic investigators, and graduate students.
Over the past years, the chem(o)informatics field has further evolved and new application areas have opened up, for example, in the broadly defined area of chemical biology. In Chemoinformatics and Computational Chemical Biology, leading investigators bring together a detailed series of reviews and methods including, among others, system-directed approaches using small molecules, the design of target-focused compound libraries, the study of molecular selectivity, and the systematic analysis of target-ligand interactions. Furthermore, the book delves into similarity methods, machine learning, probabilistic approaches, fragment-based methods, as well as topics that go beyond the current chemoinformatics spectrum, such as knowledge-based modeling of G protein-coupled receptor structures and computational design of siRNA libraries. As a volume in the highly successful Methods in Molecular Biology (TM) series, this collection provides detailed descriptions and implementation advice that are exceedingly relevant for basic researchers and practitioners in this highly interdisciplinary research and development area. Cutting-edge and unambiguous, Chemoinformatics and Computational Chemical Biology serves as an ideal guide for experts and newcomers alike to this vital and dynamic field of study.
In the literature, several terms are used synonymously to name the topic of this book: chem-, chemi-, or chemo-informatics. A widely recognized de- nition of this discipline is the one by Frank Brown from 1998 (1) who defined chemoinformatics as the combination of "all the information resources that a scientist needs to optimize the properties of a ligand to become a drug. " In Brown's definition, two aspects play a fundamentally important role: de- sion support by computational means and drug discovery, which distinguishes it from the term "chemical informatics" that was introduced at least ten years earlier and described as the application of information technology to ch- istry (not with a specific focus on drug discovery). In addition, there is of course "chemometrics," which is generally understood as the application of statistical methods to chemical data and the derivation of relevant statistical models and descriptors (2). The pharmaceutical focus of many developments and efforts in this area-and the current popularity of gene-to-drug or si- lar paradigms-is further reflected by the recent introduction of such terms as "discovery informatics" (3), which takes into account that gaining kno- edge from chemical data alone is not sufficient to be ultimately successful in drug discovery. Such insights are well in accord with other views that the boundaries between bio- and chemoinformatics are fluid and that these d- ciplines should be closely combined or merged to significantly impact b- technology or pharmaceutical research (4).
Chemoinformatics is the use of information technology in the acquisition, analysis and management of data and information relating to chemical compounds and their properties. The purpose of this book is to provide computational scientists, medicinal chemists and biologists with complete practical information and underlying theory relating to modern Chemoinformatics and related drug discovery informatics technologies. This is an essential handbook for determining the right Chemoinformatics method or technology to use.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|