Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book contains selected papers from the 7th International Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage Architectures, ADMS 2016, and the 4th International Workshop on In-Memory Data Management and Analytics, IMDM 2016, held in New Dehli, India, in September 2016. The joint Workshops were co-located with VLDB 2016. The 9 papers presented were carefully reviewed and selected from 18 submissions. They investigate opportunities in accelerating analytics/data management systems and workloads (including traditional OLTP, data warehousing/OLAP, ETL streaming/real-time, business analytics, and XML/RDF processing) running memory-only environments, using processors (e.g. commodity and specialized multi-core, GPUs and FPGAs, storage systems (e.g. storage-class memories like SSDs and phase-change memory), and hybrid programming models like CUDA, OpenCL, and Open ACC. The papers also explore the interplay between overall system design, core algorithms, query optimization strategies, programming approaches, performance modeling and evaluation, from the perspective of data management applications.
This book constitutes the thoroughly refereed post conference proceedings of the First and Second International Workshops on In Memory Data Management and Analysis held in Riva del Garda, Italy, August 2013 and Hangzhou, China, in September 2014. The 11 revised full papers were carefully reviewed and selected from 18 submissions and cover topics from main-memory graph analytics platforms to main-memory OLTP applications.
With growing memory sizes and memory prices dropping by a factor of 10 every 5 years, data having a "primary home" in memory is now a reality. Main-memory databases eschew many of the traditional architectural pillars of relational database systems that optimized for disk-resident data. The result of these memory-optimized designs are systems that feature several innovative approaches to fundamental issues (e.g., concurrency control, query processing) that achieve orders of magnitude performance improvements over traditional designs. This monograph provides an overview of recent developments in main-memory database systems. It covers five main issues and architectural choices that need to be made when building a high performance main-memory optimized database: data organization and storage, indexing, concurrency control, durability and recovery techniques, and query processing and compilation. The monograph focuses on four commercial and research systems: H-StoreA/oltDB, Hekaton, HyPer, and SAPHANA. These systems are diverse in their design choices and form a representative sample of the state of the art in main-memory database systems. It also covers other commercial and academic systems, along with current and future research trends.
|
You may like...
|