0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.): Hartmut Yersin Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R7,738 Discovery Miles 77 380 Ships in 18 - 22 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the... Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the original 1st ed. 2001)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R7,608 Discovery Miles 76 080 Ships in 18 - 22 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Ultra-Link VGA to HDMI with Audio…
R349 R309 Discovery Miles 3 090
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
Microsoft Xbox Series Wireless…
R1,659 Discovery Miles 16 590
Adidas Hybrid 25 Boxing Gloves (Red)
 (2)
R491 R409 Discovery Miles 4 090
Casio LW-200-7AV Watch with 10-Year…
R999 R899 Discovery Miles 8 990
Dig & Discover: Ancient Egypt - Excavate…
Hinkler Pty Ltd Kit R253 Discovery Miles 2 530
Dala Lino Carving & Printing Kit
R632 R524 Discovery Miles 5 240
Sony PlayStation 5 DualSense Wireless…
R1,649 Discovery Miles 16 490
Tesa Basic Masking Tape (35m x 38mm)
R99 Discovery Miles 990
Home Classix Silicone Flower Design Mat…
R49 R40 Discovery Miles 400

 

Partners