0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.): Hartmut Yersin Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R8,180 Discovery Miles 81 800 Ships in 10 - 15 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the... Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the original 1st ed. 2001)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R8,039 Discovery Miles 80 390 Ships in 10 - 15 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Digital Hand Lettering and Modern…
Shelly Kim Paperback  (1)
R658 R563 Discovery Miles 5 630
Works of Calligraphy in the Jin and Tang…
Cheryl Wong, Xu Kexin Hardcover R336 Discovery Miles 3 360
Arabic Calligraphy - Naskh Script for…
Paperback R268 R231 Discovery Miles 2 310
Cornish Sketchbook - A Tour of West…
Graham Sibley Hardcover R931 Discovery Miles 9 310
A Handbook of Early Arabic Kufic Script…
S. M. V. Mousavi Jazayeri Hardcover R2,358 Discovery Miles 23 580
A Beginner's Guide to Chinese Brush…
Self Hardcover R261 Discovery Miles 2 610
Handwriting Clues Club - Book 3 - A-Z…
Wayne Ramirez Hardcover R609 Discovery Miles 6 090
Introduction to Japanese Kanji…
Kunii Takezaki, Bob Godin Paperback R536 R469 Discovery Miles 4 690
Chinese Calligraphy - Standard Script…
Paperback R269 R232 Discovery Miles 2 320
Creative Lettering Masterclass
Kit  (1)
R354 R312 Discovery Miles 3 120

 

Partners