![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This concise, fast-paced text introduces the concepts and applications behind plane networks. It presents fundamental material from linear algebra and differential equations, and offers several different applications of the continuous theory. Practical problems, supported by MATLAB files, underscore the theory; additional material can be downloaded from the author's website.
Build and operate multi-GNSS and multi-frequency receivers with state-of-the-art techniques using this up-to-date, thorough, and easy-to-follow text. Covering both theory and practise, and complemented by MATLAB (c) code and digital samples with which to test it, this package is a powerful learning tool for students, engineers, and researchers everywhere. Suggestions of hardware equipment allow you to get to work straight away and to create your own samples. Concisely but clearly explaining all the fundamental concepts in one place, this is also a perfect resource for readers seeking an introduction to the topic.
This concise, fast-paced text introduces the concepts and applications behind plane networks. It presents fundamental material from linear algebra and differential equations, and offers several different applications of the continuous theory. Practical problems, supported by MATLAB files, underscore the theory; additional material can be downloaded from the author's website.
This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.
Satellite navigation receivers are used to receive, process, and decode space-based navigation signals, such as those provided by the GPS constellation of satellites. There is an increasing need for a unified open platform that will enable enhanced receiver development and design, as well as cost-effective testing procedures for various applications. This book and companion DVD provide hands-on exploration of new technologies in this rapidly growing field. One of the unique features of the work is the interactive approach used, giving readers the ability to construct their own Global Navigation Satellite Systems (GNSS) receivers. To construct such a reconfigurable receiver with a wide range of applications, the authors discuss receiver architecture based on software-defined radio (SDR) techniques. The presentation unfolds in a systematic, user-friendly style and goes from the basics to cutting-edge research. Additional features and topics include: * Presentation of basic signal structures used in GPS and Galileo, the European satellite navigation system * Design and implementation of a GPS signal generator * Presentation and analysis of different methods of signal acquisitiona "serial search; parallel-frequency space search; and parallel-code phase searcha "as well as code/carrier tracking and navigation data decoding * A complete GPS software receiver implemented using MATLAB code as well as GPS and GIOVE-A signal recordsa "available on the companion cross-platform DVDa "allowing readers to change various parameters and immediately see their effects * MATLAB-based exercises * A hands-on method of testing the material covered in the book: supplementaryfront-end hardware equipmenta "which may be purchased at http: //ccar.colorado.edu/gnssa "enables readers working on a Windows or LINUX system to generate real-world data by converting analog signals to digital signals * Supplementary course material for instructors available at http: //gps.aau.dk/softgps * Bibliography of recent results and comprehensive index The book is aimed at applied mathematicians, electrical engineers, geodesists, and graduate students. It may be used as a textbook in various GPS technology and signal processing courses, or as a self-study reference for anyone working with satellite navigation receivers.
The emergence of satellite technology has changed the lives of millions of people. In particular, GPS has brought an unprecedented level of accuracy to the field of geodesy. This text is a guide to the algorithms and mathematical principles that account for the success of GPS technology and replaces the authors' previous work, Linear Algebra, Geodesy, and GPS (1997). An initial discussion of the basic concepts, characteristics and technical aspects of different satellite systems is followed by the necessary mathematical content which is presented in a detailed and self-contained fashion. At the heart of the matter are the positioning algorithms on which GPS technology relies, the discussion of which will affirm the mathematical contents of the previous chapters. Numerous ready-to-use MATLAB codes are included for the reader. This comprehensive guide will be invaluable for engineers and academic researchers who wish to master the theory and practical application of GPS technology.
|
![]() ![]() You may like...
|