Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book presents the state-of-the-art of Terahertz spectroscopy. It is a modern source for a beginners and researcher interested in THz spectroscopy. The basics and physical background of THz spectroscopy and technology are explained, and important applications are described. The book presents the highlights of scientific research in the field of THz science and provides an excellent overview of the field and future directions of research. Over the last decade the field of terahertz spectroscopy has developed into one of the most rapidly growing fields of spectroscopy with large impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements in this frequency range. In solids and liquids terahertz radiation is at resonance with both phonon modes and hydrogen bonding modes which makes it an ideal tool to study the interaction between molecules in a unique way, thus opening a wealth of opportunities for research in physics, chemistry, biology, materials science and pharmaceuticals. This book provides an easy access to scientists, engineers and students alike who want to understand the theory and applications of modern terahertz spectroscopy.
An up-to-date overview of reflectometers used for optical spectroscopy of various kinds of liquids, ranging from well-known transparent liquids to "pathological" industrial liquids. The book reviews and explains basic materials for anyone wanting to get to know the theory, spectral analysis and modern devices needed for the measurement of refractive index and absorption of liquids. Moreover, the book gives an introduction to reflectivity from optically nonlinear liquids such as liquids containing nanoparticles.
TheKramers-Kronigrelationsconstitutethemathematicalformulationofthe fundamental connection between the in-phase to the out-of-phase response of a system to a sinusoidal time-varying external perturbation. Such connection exists in both classical and quantum physical systems and derives directly from the principle of causality. Apart from being of great importance in high energy physics, statistical physics, and acoustics, at present the Kramers-Kronig relations are basic and widely-accepted tools for the investigation of the linear optical properties of materials, since they allow performing the so-called inversion of optical data, i.e. acquiring knowledge on dispersive phenomena by measurements of absorptive phenomena over the whole energy spectrum or vice versa. Since the late '80s, a growing body of theoretical results as well as of experimental evidences has shown that the Kramers-Kronig relations can be adopted for e?ciently acquiring knowledge on nonlinear optical phenomena. These results suggest that the Kramers-Kronig relations may become in a near future standard techniques in the context of nonlinear spectroscopy. Thisbookisthe?rstcomprehensivetreatisedevotedtoprovidingauni- ing picture of the physical backgrounds, of the rigorous mathematical theory, and of the applications of the Kramers-Kronig relations in both ?elds of l- ear and nonlinear optical spectroscopy. Some basic programs written for the 1 MATLAB environment are also included. This book is organized as an argumentative discourse, progressing from the linear to the nonlinear phenomena, from the general to the speci?c s- tems, and from the theoretical to the experimental results.
Devoted to novel optical measurement techniques that are applied both in industry and life sciences, this book contributes a fresh perspective on the development of modern optical sensors. These sensors are often essential in detecting and controlling parameters that are important for both industrial and biomedical applications. The book provides easy access for beginners wishing to gain familiarity with the innovations of modern optics.
This book is devoted to dispersion theory in linear and nonlinear optics. Dispersion relations and methods of analysis in optical spectroscopy are derived with the aid of complex analysis. The book introduces the mathematical basis and derivations of various dispersion relations that are used in optical spectroscopy. In addition, it presents the dispersion theory of the nonlinear optical processes which are essential in modern optical spectroscopy. The book includes new methods such as the maximum entropy model for wavelength-dependent spectra analysis.
This book presents the state-of-the-art of Terahertz spectroscopy. It is a modern source for a beginners and researcher interested in THz spectroscopy. The basics and physical background of THz spectroscopy and technology are explained, and important applications are described. The book presents the highlights of scientific research in the field of THz science and provides an excellent overview of the field and future directions of research. Over the last decade the field of terahertz spectroscopy has developed into one of the most rapidly growing fields of spectroscopy with large impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements in this frequency range. In solids and liquids terahertz radiation is at resonance with both phonon modes and hydrogen bonding modes which makes it an ideal tool to study the interaction between molecules in a unique way, thus opening a wealth of opportunities for research in physics, chemistry, biology, materials science and pharmaceuticals. This book provides an easy access to scientists, engineers and students alike who want to understand the theory and applications of modern terahertz spectroscopy.
This book is devoted to dispersion theory in linear and nonlinear optics. Dispersion relations and methods of analysis in optical spectroscopy are derived with the aid of complex analysis. The book introduces the mathematical basis and derivations of various dispersion relations that are used in optical spectroscopy. In addition, it presents the dispersion theory of the nonlinear optical processes which are essential in modern optical spectroscopy. The book includes new methods such as the maximum entropy model for wavelength-dependent spectra analysis.
TheKramers-Kronigrelationsconstitutethemathematicalformulationofthe fundamental connection between the in-phase to the out-of-phase response of a system to a sinusoidal time-varying external perturbation. Such connection exists in both classical and quantum physical systems and derives directly from the principle of causality. Apart from being of great importance in high energy physics, statistical physics, and acoustics, at present the Kramers-Kronig relations are basic and widely-accepted tools for the investigation of the linear optical properties of materials, since they allow performing the so-called inversion of optical data, i.e. acquiring knowledge on dispersive phenomena by measurements of absorptive phenomena over the whole energy spectrum or vice versa. Since the late '80s, a growing body of theoretical results as well as of experimental evidences has shown that the Kramers-Kronig relations can be adopted for e?ciently acquiring knowledge on nonlinear optical phenomena. These results suggest that the Kramers-Kronig relations may become in a near future standard techniques in the context of nonlinear spectroscopy. Thisbookisthe?rstcomprehensivetreatisedevotedtoprovidingauni- ing picture of the physical backgrounds, of the rigorous mathematical theory, and of the applications of the Kramers-Kronig relations in both ?elds of l- ear and nonlinear optical spectroscopy. Some basic programs written for the 1 MATLAB environment are also included. This book is organized as an argumentative discourse, progressing from the linear to the nonlinear phenomena, from the general to the speci?c s- tems, and from the theoretical to the experimental results.
|
You may like...
Terminator 6: Dark Fate
Linda Hamilton, Arnold Schwarzenegger
Blu-ray disc
(1)
R76 Discovery Miles 760
The Jungle Book 2 (Disney)
Haley Joel Osment, John Goodman, …
Blu-ray disc
(1)
R91 Discovery Miles 910
|