Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This volume presents an accessible overview of mathematical control theory and analysis of PDEs, providing young researchers a snapshot of these active and rapidly developing areas. The chapters are based on two mini-courses and additional talks given at the spring school "Trends in PDEs and Related Fields" held at the University of Sidi Bel Abbes, Algeria from 8-10 April 2019. In addition to providing an in-depth summary of these two areas, chapters also highlight breakthroughs on more specific topics such as: Sobolev spaces and elliptic boundary value problems Local energy solutions of the nonlinear wave equation Geometric control of eigenfunctions of Schroedinger operators Research in PDEs and Related Fields will be a valuable resource to graduate students and more junior members of the research community interested in control theory and analysis of PDEs.
This monograph examines the stability of various coupled systems with local Kelvin-Voigt damping. The development of this area is thoroughly reviewed along with the authors' contributions. New results are featured on the fundamental properties of solutions of linear transmission evolution PDEs involving Kelvin-Voigt damping, with special emphasis on the asymptotic behavior of these solutions. The vibrations of transmission problems are highlighted as well, making this a valuable resource for those studying this active area of research. The book begins with a brief description of the abstract theory of linear evolution equations with a particular focus on semigroup theory. Different types of stability are also introduced along with their connection to resolvent estimates. After this foundation is established, different models are presented for uni-dimensional and multi-dimensional linear transmission evolution partial differential equations with Kelvin-Voigt damping. Stabilization of Kelvin-Voigt Damped Systems will be a useful reference for researchers in mechanics, particularly those interested in the study of control theory of PDEs.
The proceedings of the summer school held at the Universite Savoie Mont Blanc, France, 'Mathematics in Savoie 2015', whose theme was long time behavior and control of evolution equations. The event was attended by world-leading researchers from the community of control theory, as well as young researchers from around the globe. This volume contains surveys of active research topics, along with original research papers containing exciting new results on the behavior of evolution equations. It will therefore benefit both graduate students and researchers. Key topics include the recent view on the controllability of parabolic systems that permits the reader to overview the moment method for parabolic equations, as well as numerical stabilization and control of partial differential equations.
By introducing a new stabilization methodology, this book characterizes the stability of a certain class of systems. The stability (exponential, polynomial, or weaker) for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system combined with a boundedness property of the transfer function of the associated open loop system. A similar strategy is applied to systems where a delay term is added. The book concludes with many concrete examples. This book is addressed to graduate students in mathematics or engineering and also to researchers with an interest in stabilization and control systems governed by partial differential equations.
This brief provides unified methods for the stabilization of some fractional evolution systems, nicely complementing existing literature on fractional calculus. The volume is divided into three chapters, the first of which considers the stabilization for some abstract evolution equations with a fractional damping, the second of which validates the abstract results of chapter 1 on concrete examples, and the third of which studies the stabilization of fractional evolution systems with memory.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
|
You may like...
|