0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (Paperback): Ni-Bin Chang, Kaixu Bai Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (Paperback)
Ni-Bin Chang, Kaixu Bai
R1,620 Discovery Miles 16 200 Ships in 10 - 15 working days

In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.

Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (Hardcover): Ni-Bin Chang, Kaixu Bai Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (Hardcover)
Ni-Bin Chang, Kaixu Bai
R6,384 Discovery Miles 63 840 Ships in 10 - 15 working days

In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Card Counter
Oscar Isaac, Tye Sheridan, … DVD R186 Discovery Miles 1 860
Gloria
Sam Smith CD R176 Discovery Miles 1 760
Poop Scoopa
R399 R278 Discovery Miles 2 780
Crucial P310 | 1TB | M.2 NVMe | 3D NAND…
R2,739 R2,527 Discovery Miles 25 270
HP P24h G5 24" FHD IPS Panel Monitor
R4,999 R4,599 Discovery Miles 45 990
Staedtler 14cm Multi-Use Scissors (Right…
R29 R15 Discovery Miles 150
The Garden Within - Where the War with…
Anita Phillips Paperback R329 R302 Discovery Miles 3 020
Sharp EL-W506T Scientific Calculator…
R599 R560 Discovery Miles 5 600
Oak Oak Gevora Eau De Parfum Spray…
R1,188 Discovery Miles 11 880
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400

 

Partners