0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Topics in Mathematical Biology (Paperback, 1st ed. 2017): Karl-Peter Hadeler Topics in Mathematical Biology (Paperback, 1st ed. 2017)
Karl-Peter Hadeler; Contributions by Michael C. Mackey, Angela Stevens
R3,785 Discovery Miles 37 850 Ships in 10 - 15 working days

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.

Cellular Automata: Analysis and Applications (Paperback, Softcover reprint of the original 1st ed. 2017): Karl-Peter Hadeler,... Cellular Automata: Analysis and Applications (Paperback, Softcover reprint of the original 1st ed. 2017)
Karl-Peter Hadeler, Johannes Muller
R3,780 Discovery Miles 37 800 Ships in 10 - 15 working days

This book provides an overview of the main approaches used to analyze the dynamics of cellular automata. Cellular automata are an indispensable tool in mathematical modeling. In contrast to classical modeling approaches like partial differential equations, cellular automata are relatively easy to simulate but difficult to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction to cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of various topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kurka classification)? These classifications suggest that cellular automata be clustered, similar to the classification of partial differential equations into hyperbolic, parabolic and elliptic equations. This part of the book culminates in the question of whether the properties of cellular automata are decidable. Surjectivity and injectivity are examined, and the seminal Garden of Eden theorems are discussed. In turn, the third part focuses on the analysis of cellular automata that inherit distinct properties, often based on mathematical modeling of biological, physical or chemical systems. Linearity is a concept that allows us to define self-similar limit sets. Models for particle motion show how to bridge the gap between cellular automata and partial differential equations (HPP model and ultradiscrete limit). Pattern formation is related to linear cellular automata, to the Bar-Yam model for the Turing pattern, and Greenberg-Hastings automata for excitable media. In addition, models for sand piles, the dynamics of infectious d

Cellular Automata: Analysis and Applications (Hardcover, 1st ed. 2017): Karl-Peter Hadeler, Johannes Muller Cellular Automata: Analysis and Applications (Hardcover, 1st ed. 2017)
Karl-Peter Hadeler, Johannes Muller
R5,406 Discovery Miles 54 060 Ships in 10 - 15 working days

This book provides an overview of the main approaches used to analyze the dynamics of cellular automata. Cellular automata are an indispensable tool in mathematical modeling. In contrast to classical modeling approaches like partial differential equations, cellular automata are relatively easy to simulate but difficult to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction to cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of various topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kurka classification)? These classifications suggest that cellular automata be clustered, similar to the classification of partial differential equations into hyperbolic, parabolic and elliptic equations. This part of the book culminates in the question of whether the properties of cellular automata are decidable. Surjectivity and injectivity are examined, and the seminal Garden of Eden theorems are discussed. In turn, the third part focuses on the analysis of cellular automata that inherit distinct properties, often based on mathematical modeling of biological, physical or chemical systems. Linearity is a concept that allows us to define self-similar limit sets. Models for particle motion show how to bridge the gap between cellular automata and partial differential equations (HPP model and ultradiscrete limit). Pattern formation is related to linear cellular automata, to the Bar-Yam model for the Turing pattern, and Greenberg-Hastings automata for excitable media. In addition, models for sand piles, the dynamics of infectious d

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Baby Dove Lotion Night Time
R81 Discovery Miles 810
Lifematrix MCT Powder (Unflavoured…
R271 Discovery Miles 2 710
Luceco A70 Classic 16W Non-Dimmable LED…
R83 Discovery Miles 830
How To Fix (Unf*ck) A Country - 6 Things…
Roy Havemann Paperback R310 R210 Discovery Miles 2 100
Datadart Nylon Stems-Small
R19 Discovery Miles 190
Aqualine Back Float (Yellow and Blue)
R277 Discovery Miles 2 770
Bibby's - More Good Food
Dianne Bibby Hardcover R480 R340 Discovery Miles 3 400
Bostik Glu Dots - Extra Strength (64…
R55 Discovery Miles 550
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Bestway Spider-Man Beach Ball (51cm)
R50 R45 Discovery Miles 450

 

Partners