0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Parameter Estimation and Hypothesis Testing in Linear Models (Hardcover, 2nd, updated and enlarged ed. 1999): Karl-Rudolf Koch Parameter Estimation and Hypothesis Testing in Linear Models (Hardcover, 2nd, updated and enlarged ed. 1999)
Karl-Rudolf Koch
R1,727 Discovery Miles 17 270 Ships in 10 - 15 working days

A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.

Introduction to Bayesian Statistics (Hardcover, 2nd, updated and enlarged ed. 2007): Karl-Rudolf Koch Introduction to Bayesian Statistics (Hardcover, 2nd, updated and enlarged ed. 2007)
Karl-Rudolf Koch
R2,895 Discovery Miles 28 950 Ships in 10 - 15 working days

The Introduction to Bayesian Statistics (2nd Edition) presents Bayes theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters, in a manner that is simple, intuitive and easy to comprehend. The methods are applied to linear models, in models for a robust estimation, for prediction and filtering and in models for estimating variance components and covariance components. Regularization of inverse problems and pattern recognition are also covered while Bayesian networks serve for reaching decisions in systems with uncertainties. If analytical solutions cannot be derived, numerical algorithms are presented such as the Monte Carlo integration and Markov Chain Monte Carlo methods."

Introduction to Bayesian Statistics (Paperback, Softcover reprint of hardcover 2nd ed. 2007): Karl-Rudolf Koch Introduction to Bayesian Statistics (Paperback, Softcover reprint of hardcover 2nd ed. 2007)
Karl-Rudolf Koch
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

The Introduction to Bayesian Statistics (2nd Edition) presents Bayes theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters, in a manner that is simple, intuitive and easy to comprehend. The methods are applied to linear models, in models for a robust estimation, for prediction and filtering and in models for estimating variance components and covariance components. Regularization of inverse problems and pattern recognition are also covered while Bayesian networks serve for reaching decisions in systems with uncertainties. If analytical solutions cannot be derived, numerical algorithms are presented such as the Monte Carlo integration and Markov Chain Monte Carlo methods.

Bayesian Inference with Geodetic Applications (Paperback, 1990 ed.): Karl-Rudolf Koch Bayesian Inference with Geodetic Applications (Paperback, 1990 ed.)
Karl-Rudolf Koch
R1,506 Discovery Miles 15 060 Ships in 10 - 15 working days

This introduction to Bayesian inference places special emphasis on applications. All basic concepts are presented: Bayes' theorem, prior density functions, point estimation, confidence region, hypothesis testing and predictive analysis. In addition, Monte Carlo methods are discussed since the applications mostly rely on the numerical integration of the posterior distribution. Furthermore, Bayesian inference in the linear model, nonlinear model, mixed model and in the model with unknown variance and covariance components is considered. Solutions are supplied for the classification, for the posterior analysis based on distributions of robust maximum likelihood type estimates, and for the reconstruction of digital images.

Einfuhrung in Die Bayes-Statistik (German, Hardcover, 2000 ed.): Karl-Rudolf Koch Einfuhrung in Die Bayes-Statistik (German, Hardcover, 2000 ed.)
Karl-Rudolf Koch
R3,208 Discovery Miles 32 080 Ships in 12 - 19 working days

Das Buch fuhrt auf einfache und verstandliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schatzung unbekannter Parameter, die Festlegung von Konfidenzregionen fur die unbekannten Parameter und die Prufung von Hypothesen fur die Parameter abgeleitet. Angewendet werden die Verfahren fur die Parameterschatzung im linearen Modell, fur die Parameterschatzung, die sich robust gegenuber Ausreissern in den Beobachtungen verhalt, fur die Pradiktion und Filterung, die Varianz- und Kovarianzkomponentenschatzung und die Mustererkennung. Fur Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht losen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt."

Einfuhrung in Die Bayes-Statistik (German, Paperback, Softcover Reprint of the Original 1st 2000 ed.): Karl-Rudolf Koch Einfuhrung in Die Bayes-Statistik (German, Paperback, Softcover Reprint of the Original 1st 2000 ed.)
Karl-Rudolf Koch
R3,371 Discovery Miles 33 710 Ships in 10 - 15 working days

Das Buch fuhrt auf einfache und verstandliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schatzung unbekannter Parameter, die Festlegung von Konfidenzregionen fur die unbekannten Parameter und die Prufung von Hypothesen fur die Parameter abgeleitet. Angewendet werden die Verfahren fur die Parameterschatzung im linearen Modell, fur die Parameterschatzung, die sich robust gegenuber Ausreissern in den Beobachtungen verhalt, fur die Pradiktion und Filterung, die Varianz- und Kovarianzkomponentenschatzung und die Mustererkennung. Fur Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht losen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Disability and Isaiah's Suffering…
Jeremy Schipper Hardcover R3,619 R3,293 Discovery Miles 32 930
Tamiya X-32 Enamel Paint (Titanium…
R53 Discovery Miles 530
Another Way - Thinking Together about…
Jeremy Garber Hardcover R1,109 R932 Discovery Miles 9 320
Feel Good with ADHD Book for Kids - An…
Karin Roach Paperback R283 R267 Discovery Miles 2 670
Neither Belief nor Unbelief…
Sona Grigoryan Hardcover R3,666 Discovery Miles 36 660
The Town of Killsnackary
Celia Moncrieff Hardcover R604 Discovery Miles 6 040
Safari Nation - A Social History Of The…
Jacob Dlamini Paperback R330 R305 Discovery Miles 3 050
The Bitterness Of Olives
Andrew Brown Paperback R452 Discovery Miles 4 520
A Promised Land
Barack Obama Hardcover  (6)
R930 R795 Discovery Miles 7 950
Scottish Offpiste Skiing & Snowboarding…
Kenny Biggin Paperback R644 Discovery Miles 6 440

 

Partners