0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Parameter Estimation and Hypothesis Testing in Linear Models (Hardcover, 2nd, updated and enlarged ed. 1999): Karl-Rudolf Koch Parameter Estimation and Hypothesis Testing in Linear Models (Hardcover, 2nd, updated and enlarged ed. 1999)
Karl-Rudolf Koch
R2,650 R1,615 Discovery Miles 16 150 Save R1,035 (39%) Ships in 12 - 17 working days

A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.

Introduction to Bayesian Statistics (Hardcover, 2nd, updated and enlarged ed. 2007): Karl-Rudolf Koch Introduction to Bayesian Statistics (Hardcover, 2nd, updated and enlarged ed. 2007)
Karl-Rudolf Koch
R2,810 Discovery Miles 28 100 Ships in 10 - 15 working days

The Introduction to Bayesian Statistics (2nd Edition) presents Bayes theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters, in a manner that is simple, intuitive and easy to comprehend. The methods are applied to linear models, in models for a robust estimation, for prediction and filtering and in models for estimating variance components and covariance components. Regularization of inverse problems and pattern recognition are also covered while Bayesian networks serve for reaching decisions in systems with uncertainties. If analytical solutions cannot be derived, numerical algorithms are presented such as the Monte Carlo integration and Markov Chain Monte Carlo methods."

Introduction to Bayesian Statistics (Paperback, Softcover reprint of hardcover 2nd ed. 2007): Karl-Rudolf Koch Introduction to Bayesian Statistics (Paperback, Softcover reprint of hardcover 2nd ed. 2007)
Karl-Rudolf Koch
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

The Introduction to Bayesian Statistics (2nd Edition) presents Bayes theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters, in a manner that is simple, intuitive and easy to comprehend. The methods are applied to linear models, in models for a robust estimation, for prediction and filtering and in models for estimating variance components and covariance components. Regularization of inverse problems and pattern recognition are also covered while Bayesian networks serve for reaching decisions in systems with uncertainties. If analytical solutions cannot be derived, numerical algorithms are presented such as the Monte Carlo integration and Markov Chain Monte Carlo methods.

Bayesian Inference with Geodetic Applications (Paperback, 1990 ed.): Karl-Rudolf Koch Bayesian Inference with Geodetic Applications (Paperback, 1990 ed.)
Karl-Rudolf Koch
R1,453 Discovery Miles 14 530 Ships in 10 - 15 working days

This introduction to Bayesian inference places special emphasis on applications. All basic concepts are presented: Bayes' theorem, prior density functions, point estimation, confidence region, hypothesis testing and predictive analysis. In addition, Monte Carlo methods are discussed since the applications mostly rely on the numerical integration of the posterior distribution. Furthermore, Bayesian inference in the linear model, nonlinear model, mixed model and in the model with unknown variance and covariance components is considered. Solutions are supplied for the classification, for the posterior analysis based on distributions of robust maximum likelihood type estimates, and for the reconstruction of digital images.

Einfuhrung in Die Bayes-Statistik (German, Hardcover, 2000 ed.): Karl-Rudolf Koch Einfuhrung in Die Bayes-Statistik (German, Hardcover, 2000 ed.)
Karl-Rudolf Koch
R2,980 Discovery Miles 29 800 Ships in 12 - 17 working days

Das Buch fuhrt auf einfache und verstandliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schatzung unbekannter Parameter, die Festlegung von Konfidenzregionen fur die unbekannten Parameter und die Prufung von Hypothesen fur die Parameter abgeleitet. Angewendet werden die Verfahren fur die Parameterschatzung im linearen Modell, fur die Parameterschatzung, die sich robust gegenuber Ausreissern in den Beobachtungen verhalt, fur die Pradiktion und Filterung, die Varianz- und Kovarianzkomponentenschatzung und die Mustererkennung. Fur Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht losen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt."

Einfuhrung in Die Bayes-Statistik (German, Paperback, Softcover Reprint of the Original 1st 2000 ed.): Karl-Rudolf Koch Einfuhrung in Die Bayes-Statistik (German, Paperback, Softcover Reprint of the Original 1st 2000 ed.)
Karl-Rudolf Koch
R3,274 Discovery Miles 32 740 Ships in 10 - 15 working days

Das Buch fuhrt auf einfache und verstandliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schatzung unbekannter Parameter, die Festlegung von Konfidenzregionen fur die unbekannten Parameter und die Prufung von Hypothesen fur die Parameter abgeleitet. Angewendet werden die Verfahren fur die Parameterschatzung im linearen Modell, fur die Parameterschatzung, die sich robust gegenuber Ausreissern in den Beobachtungen verhalt, fur die Pradiktion und Filterung, die Varianz- und Kovarianzkomponentenschatzung und die Mustererkennung. Fur Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht losen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
6-Piece Luggage Organiser Set [Pink]
R199 R125 Discovery Miles 1 250
Playstation 4 Replacement Case
 (9)
R54 Discovery Miles 540
Bostik Clear (50ml)
R57 Discovery Miles 570
Sellotape Clear Tape - Double Value…
R22 R16 Discovery Miles 160
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Konix Naruto Gamepad for Nintendo Switch…
R699 R599 Discovery Miles 5 990
HP 330 Wireless Keyboard and Mouse Combo
R800 R400 Discovery Miles 4 000
Xiaomi Smart Pet Food Feeder Desiccant…
R202 Discovery Miles 2 020
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840

 

Partners