![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussed in the book.
Keyword Spotting (KWS) has been proposed as a flexible and more error-tolerant alternative to full transcriptions. In most cases, it allows to retrieve arbitrary query words in handwritten historical document.This comprehensive compendium gives a self-contained preamble and visually attractive description to the field of graph-based KWS. The volume highlights a profound insight into each step of the whole KWS pipeline, viz. image preprocessing, graph representation and graph matching.Written by two world-renowned co-authors, this unique title combines two very current research fields of graph-based pattern recognition and document analysis. The book serves as an attractive teaching material for graduate students, as well as a useful reference text for professionals, academics and researchers.
This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussed in the book.
|
You may like...
Challenges and Solutions for Climate…
Wytze Van Der Gaast, Katherine Begg
Hardcover
R2,650
Discovery Miles 26 500
Daily Meditations with the Holy Spirit…
Jude Winkler
Leather / fine binding
Judy Garland, Lost on the Yellow Brick…
Michael Lee Simpson, Michael Selsman
Hardcover
|