0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Modeling Self-Heating Effects in Nanoscale Devices (Paperback): Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen... Modeling Self-Heating Effects in Nanoscale Devices (Paperback)
Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen M. Goodnick
R1,126 Discovery Miles 11 260 Ships in 10 - 15 working days

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.

Modeling Self-Heating Effects in Nanoscale Devices (Hardcover): Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen... Modeling Self-Heating Effects in Nanoscale Devices (Hardcover)
Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen M. Goodnick
R3,158 Discovery Miles 31 580 Ships in 10 - 15 working days

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Efekto Cypermethrin - Emulsifiable…
R109 Discovery Miles 1 090
Sony PlayStation 5 DualSense Wireless…
 (5)
R1,599 R1,479 Discovery Miles 14 790
Frozen - Blu-Ray + DVD
Blu-ray disc R344 Discovery Miles 3 440
Bestway Beach Ball (51cm)
 (2)
R26 Discovery Miles 260
Professor Snape Wizard Wand - In…
 (8)
R832 Discovery Miles 8 320
Philips TAUE101 Wired In-Ear Headphones…
R124 Discovery Miles 1 240
Baby Dove Lotion Night Time
R81 Discovery Miles 810
Seagull Metal Gym Rings
R159 Discovery Miles 1 590
Multi-Functional Bamboo Standing Laptop…
 (1)
R995 R500 Discovery Miles 5 000
The South African Guide To Gluten-Free…
Zorah Booley Samaai Paperback R380 R270 Discovery Miles 2 700

 

Partners