Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 23 of 23 matches in All Departments
This book introduces the linkage between evolutionary computation and complex networks and the advantages of cross-fertilising ideas from both fields. Instead of introducing each field individually, the authors focus on the research that sits at the interface of both fields. The book is structured to address two questions: (1) how complex networks are used to analyze and improve the performance of evolutionary computation methods? (2) how evolutionary computation methods are used to solve problems in complex networks? The authors interweave complex networks and evolutionary computing, using evolutionary computation to discover community structure, while also using network analysis techniques to analyze the performance of evolutionary algorithms. The book is suitable for both beginners and senior researchers in the fields of evolutionary computation and complex networks.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.
Evolutionary scheduling is a vital research domain at the interface of artificial intelligence and operational research. This edited book gives an overview of many of the current developments in the large and growing field of evolutionary scheduling. It demonstrates the applicability of evolutionary computational techniques to solve scheduling problems, not only to small-scale test problems, but also fully-fledged real-world problems.
With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers. This edited book entitled "Design and Control of Intelligent Robotic Systems" in the book series of "Studies in Computational Intelligence" is a collection of some advanced research on design and control of intelligent robots. The works presented range in scope from design methodologies to robot development. Various design approaches and al- rithms, such as evolutionary computation, neural networks, fuzzy logic, learning, etc. are included. We also would like to mention that most studies reported in this book have been implemented in physical systems. An overview on the applications of computational intelligence in bio-inspired robotics is given in Chapter 1 by M. Begum and F. Karray, with highlights of the recent progress in bio-inspired robotics research and a focus on the usage of computational intelligence tools to design human-like cognitive abilities in the robotic systems. In Chapter 2, Lisa L. Grant and Ganesh K. Venayagamoorthy present greedy search, particle swarm optimization and fuzzy logic based strategies for navigating a swarm of robots for target search in a hazardous environment, with potential applications in high-risk tasks such as disaster recovery and hazardous material detection.
Multiobjective Evolutionary Algorithms and Applications provides comprehensive treatment on the design of multiobjective evolutionary algorithms and their applications in domains covering areas such as control and scheduling. Emphasizing both the theoretical developments and the practical implementation of multiobjective evolutionary algorithms, a profound mathematical knowledge is not required. Written for a wide readership, engineers, researchers, senior undergraduates and graduate students interested in the field of evolutionary algorithms and multiobjective optimization with some basic knowledge of evolutionary computation will find this book a useful addition to their book case.
Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material.The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels.
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
This book constitutes the refereed proceedings at PAKDD Workshops 2013, affiliated with the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Gold Coast, Australia in April 2013. The 47 revised full papers presented were carefully reviewed and selected from 92 submissions. The workshops affiliated with PAKDD 2013 include: Data Mining Applications in Industry and Government (DMApps), Data Analytics for Targeted Healthcare (DANTH), Quality Issues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE), Biologically Inspired Techniques for Data Mining (BDM), Constraint Discovery and Application (CDA), Cloud Service Discovery (CloudSD).
Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Evolutionary multiobjective optimization is currently gaining a lot of attention, particularly for researchers in the evolutionary computation communities. Covers the authors recent research in the area of multiobjective evolutionary algorithms as well as its practical applications.
With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers. This edited book entitled "Design and Control of Intelligent Robotic Systems" in the book series of "Studies in Computational Intelligence" is a collection of some advanced research on design and control of intelligent robots. The works presented range in scope from design methodologies to robot development. Various design approaches and al- rithms, such as evolutionary computation, neural networks, fuzzy logic, learning, etc. are included. We also would like to mention that most studies reported in this book have been implemented in physical systems. An overview on the applications of computational intelligence in bio-inspired robotics is given in Chapter 1 by M. Begum and F. Karray, with highlights of the recent progress in bio-inspired robotics research and a focus on the usage of computational intelligence tools to design human-like cognitive abilities in the robotic systems. In Chapter 2, Lisa L. Grant and Ganesh K. Venayagamoorthy present greedy search, particle swarm optimization and fuzzy logic based strategies for navigating a swarm of robots for target search in a hazardous environment, with potential applications in high-risk tasks such as disaster recovery and hazardous material detection.
Evolutionary scheduling is a vital research domain at the interface of artificial intelligence and operational research. This edited book gives an overview of many of the current developments in the large and growing field of evolutionary scheduling. It demonstrates the applicability of evolutionary computational techniques to solve scheduling problems, not only to small-scale test problems, but also fully-fledged real-world problems.
This book introduces the linkage between evolutionary computation and complex networks and the advantages of cross-fertilising ideas from both fields. Instead of introducing each field individually, the authors focus on the research that sits at the interface of both fields. The book is structured to address two questions: (1) how complex networks are used to analyze and improve the performance of evolutionary computation methods? (2) how evolutionary computation methods are used to solve problems in complex networks? The authors interweave complex networks and evolutionary computing, using evolutionary computation to discover community structure, while also using network analysis techniques to analyze the performance of evolutionary algorithms. The book is suitable for both beginners and senior researchers in the fields of evolutionary computation and complex networks.
This book constitutes the refereed proceedings of the 11th International Conference on Simulated Evolution and Learning, SEAL 2017, held in Shenzhen, China, in November 2017. The 85 papers presented in this volume were carefully reviewed and selected from 145 submissions. They were organized in topical sections named: evolutionary optimisation; evolutionary multiobjective optimisation; evolutionary machine learning; theoretical developments; feature selection and dimensionality reduction; dynamic and uncertain environments; real-world applications; adaptive systems; and swarm intelligence.
This book constitutes the refereed proceedings of the 8th International Conference on Brain Inspired Cognitive Systems, BICS 2016, held in Beijing, China, in November 2016. The 32 full papers presented were carefully reviewed and selected from 43 submissions. They discuss the emerging areas and challenges, present the state of the art of brain-inspired cognitive systems research and applications in diverse fields by covering many topics in brain inspired cognitive systems related research including biologically inspired systems, cognitive neuroscience, models consciousness, and neural computation.
|
You may like...
|