Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book constitutes the proceedings of the 10th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2015, held in Hefei, China, in September 2015.The 63 revised full papers presented were carefully reviewed and selected from 182 submissions. The papers deal with the following main topics: evolutionary computing, neural computing, DNA computing, and membrane computing.
This book constitutes the refereed proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2013, held in Hefei, China, in October 2013. The 76 revised full papers presented were carefully reviewed and selected from more than 130 submissions. These papers provided a valuable collection of latest research outcomes in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, neural networks, probabilistic modelling, swarm intelligent, multi-objective optimisation, and practical applications in regression, classification, clustering, biological data processing, text processing, video analysis, including a number of special sessions on emerging topics such as adaptation and learning multi-agent systems, big data, swarm intelligence and data mining, and combining learning and optimisation in intelligent data engineering.
This book constitutes the refereed proceedings of the 22nd International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2021, which took place during November 25-27, 2021. The conference was originally planned to take place in Manchester, UK, but was held virtually due to the COVID-19 pandemic.The 61 full papers included in this book were carefully reviewed and selected from 85 submissions. They deal with emerging and challenging topics in intelligent data analytics and associated machine learning paradigms and systems. Special sessions were held on clustering for interpretable machine learning; machine learning towards smarter multimodal systems; and computational intelligence for computer vision and image processing.
This book constitutes the refereed proceedings of the 11th International Conference on Simulated Evolution and Learning, SEAL 2017, held in Shenzhen, China, in November 2017. The 85 papers presented in this volume were carefully reviewed and selected from 145 submissions. They were organized in topical sections named: evolutionary optimisation; evolutionary multiobjective optimisation; evolutionary machine learning; theoretical developments; feature selection and dimensionality reduction; dynamic and uncertain environments; real-world applications; adaptive systems; and swarm intelligence.
Kernel methods are a new family of techniques with sound theoretical grounds. They have been shown to be powerful approaches to pattern classification problems. However, many of the newly created kernel methods are far from perfect, and extensions and improvements are always required to make them even more effective. This book investigates one important class of the kernel methods, the least square support vector machines (LS-SVM), and enhances its performance extensively. In particular, the LS-SVM is enhanced in the contexts of four sub-problems related to solving the pattern classification problem. That is, model selection, feature selection, building sparse kernel classifier and kernel classifier ensemble. The LS-SVM can be regarded as a representative of many other kernel methods, and thus many ideas presented in this book can be easily extended to enhance performance of those related kernel methods. The results obtained should be useful to professionals that work on the theoretical aspects of kernel methods, or anyone else who may be considering ustilizing kernel methods for real-world pattern classification problems.
|
You may like...
|