Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This monograph summarizes the recent major achievements in Moebius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmuller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.
Fifteen years ago, most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely, yet today the situation has completely changed. For several years, research interest and activity have expanded in this area and there are now rich theories describing the Bergman spaces and their operators. This book is a timely treatment of the theory, written by three of the major players in the field.
There has been a flurry of activity in recent years in the loosely defined area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of Cn. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literature. The central idea in almost all these proofs is based on integral representations of holomorphic functions and elementary properties of the Bergman kernel, the Bergman metric, and the automorphism group. The unit ball was chosen as the setting since most results can be achieved there using straightforward formulas without much fuss. The book can be read comfortably by anyone familiar with single variable complex analysis; no prerequisite on several complex variables is required. The author has included exercises at the end of each chapter that vary greatly in the level of difficulty.
Handbook of Analytic Operator Theory thoroughly covers the subject of holomorphic function spaces and operators acting on them. The spaces covered include Bergman spaces, Hardy spaces, Fock spaces and the Drury-Averson space. Operators discussed in the book include Toeplitz operators, Hankel operators, composition operators, and Cowen-Douglas class operators. The volume consists of eleven articles in the general area of analytic function spaces and operators on them. Each contributor focuses on one particular topic, for example, operator theory on the Drury-Aversson space, and presents the material in the form of a survey paper which contains all the major results in the area and includes all relevant references. The overalp between this volume and existing books in the area is minimal. The material on two-variable weighted shifts by Curto, the Drury-Averson space by Fang and Xia, the Cowen-Douglas class by Misra, and operator theory on the bi-disk by Yang has never appeared in book form before. Features: The editor of the handbook is a widely known and published researcher on this topic The handbook's contributors are a who's=who of top researchers in the area The first contributed volume on these diverse topics
Handbook of Analytic Operator Theory thoroughly covers the subject of holomorphic function spaces and operators acting on them. The spaces covered include Bergman spaces, Hardy spaces, Fock spaces and the Drury-Averson space. Operators discussed in the book include Toeplitz operators, Hankel operators, composition operators, and Cowen-Douglas class operators. The volume consists of eleven articles in the general area of analytic function spaces and operators on them. Each contributor focuses on one particular topic, for example, operator theory on the Drury-Aversson space, and presents the material in the form of a survey paper which contains all the major results in the area and includes all relevant references. The overalp between this volume and existing books in the area is minimal. The material on two-variable weighted shifts by Curto, the Drury-Averson space by Fang and Xia, the Cowen-Douglas class by Misra, and operator theory on the bi-disk by Yang has never appeared in book form before. Features: The editor of the handbook is a widely known and published researcher on this topic The handbook's contributors are a who's=who of top researchers in the area The first contributed volume on these diverse topics
Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock spaces. The terms "Hardy spaces" and "Bergman spaces" are by now standard and well established. But the term "Fock spaces" is a different story. Numerous excellent books now exist on the subject of Hardy spaces. Several books about Bergman spaces, including some of the author's, have also appeared in the past few decades. But there has been no book on the market concerning the Fock spaces. The purpose of this book is to fill that void, especially when many results in the subject are complete by now. This book presents important results and techniques summarized in one place, so that new comers, especially graduate students, have a convenient reference to the subject. This book contains proofs that are new and simpler than the existing ones in the literature. In particular, the book avoids the use of the Heisenberg group, the Fourier transform, and the heat equation. This helps to keep the prerequisites to a minimum. A standard graduate course in each of real analysis, complex analysis, and functional analysis should be sufficient preparation for the reader.
This monograph summarizes the recent major achievements in Moebius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmuller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.
Fifteen years ago, most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely, yet today the situation has completely changed. For several years, research interest and activity have expanded in this area and there are now rich theories describing the Bergman spaces and their operators. This book is a timely treatment of the theory, written by three of the major players in the field.
Can be used as a graduate text Contains many exercises Contains new results
An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed include Gelfand's representation of commutative C*-algebras, the GNS construction, the spectral theorem, polar decomposition, von Neumann's double commutant theorem, Kaplansky's density theorem, the (continuous, Borel, and L8) functional calculus for normal operators, and type decomposition for von Neumann algebras. Exercises are provided after each chapter.
|
You may like...
|