![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The second edition of this introductory book sets out clearly and concisely the principles of operation of the semiconductor devices that lie at the heart of the microelectronic revolution. The book aims to teach the reader how semiconductor devices are modelled. It begins by providing a firm background in the relevant semiconductor physics. These ideas are then used to construct both circuit models and mathematical models for diodes, bipolar transistors and MOSFETs. It also describes the processes involved in fabricating silicon chips containing these devices. The first edition has already proved a highly useful textbook to first and second year degree students in electrical and electronic engineering, and related disciplines. It is also useful to HND students in similar subject areas, and as supplementary reading for anyone involved in integrated circuit design and fabrication.
This fifth edition of a successful textbook continues to provide students with an introduction to the basic principles of materials science over a broad range of topics. The authors have revised and updated this edition to include many new applications and recently developed materials. The book is presented in three parts. The first section discusses the physics, chemistry, and internal structure of materials. The second part examines the mechanical properties of materials and their application in engineering situations. The final section presents the electromagnetic properties of materials and their application. Each chapter begins with an outline of the relevance of its topics and ends with problems that require an understanding of the theory and some reasoning ability to resolve. These are followed by self-assessment questions, which test students' understanding of the principles of materials science and are designed to quickly cover the subject area of the chapter. This edition of Materials Science for Engineers includes an expanded treatment of many materials, particulary polymers, foams, composites and functional materials. Of the latter, superconductors and magnetics have received greater coverage to account for the considerable development in these fields in recent years. New sections on liquid crystals, superalloys, and organic semiconductors have also been added to provide a comprehensive overview of the field of materials science.
|
![]() ![]() You may like...
|