Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
TheInternationalSymposiumCreatingBrain-LikeIntelligencewasheldinFeb- ary 2007 in Germany. The symposium brought together notable scientists from di?erent backgrounds and with di?erent expertise related to the emerging ?eld of brain-like intelligence. Our understanding of the principles behind brain-like intelligence is still limited. After all, we have had to acknowledge that after tremendous advances in areas like neural networks, computational and arti?cial intelligence (a ?eld that had just celebrated its 50 year anniversary) and fuzzy systems, we are still not able to mimic even the lower-level sensory capabilities of humans or animals. We asked what the biggest obstacles are and how we could gain ground toward a scienti?c understanding of the autonomy, ?exibility, and robustness of intelligent biological systems as they strive to survive. New principles are usually found at the interfaces between existing disciplines, and traditional boundaries between disciplines have to be broken down to see how complex systems become simple and how the puzzle can be assembled. During the symposium we could identify some recurring themes that p- vaded many of the talks and discussions. The triad of structure, dynamics and environment,theroleoftheenvironmentasanactivepartnerinshapingsystems, adaptivity on all scales (learning, development, evolution) and the amalga- tion of an internal and external world in brain-like intelligence rate high among them. Each of us is rooted in a certain community which we have to serve with the results of our research. Looking beyond our ?elds and working at the interfaces between established areas of research requires e?ort and an active process.
These two-volume books comprise the post-conference proceedings of the 14th International Conference on Neural Information Processing (ICONIP 2007) held in Kitakyushu, Japan, during November 13-16, 2007. The Asia Paci?c Neural Network Assembly (APNNA) was founded in 1993. The ?rst ICONIP was held in 1994 in Seoul, Korea, sponsored by APNNA in collaboration with regional organizations. Since then, ICONIP has consistently provided prestigious opp- tunities for presenting and exchanging ideas on neural networks and related ?elds. Research ?elds covered by ICONIP have now expanded to include such ?elds as bioinformatics, brain machine interfaces, robotics, and computational intelligence. We had 288 ordinary paper submissions and 3 special organized session p- posals. Although the quality of submitted papers on the average was excepti- ally high, only 60% of them were accepted after rigorous reviews, each paper being reviewed by three reviewers. Concerning special organized session prop- als, two out of three were accepted. In addition to ordinary submitted papers, we invited 15 special organized sessions organized by leading researchers in emerging ?elds to promote future expansion of neural information processing. ICONIP 2007 was held at the newly established Kitakyushu Science and Research Park in Kitakyushu, Japan. Its theme was "Towards an Integrated Approach to the Brain-Brain-Inspired Engineering and Brain Science," which emphasizes the need for cross-disciplinary approaches for understanding brain functions and utilizing the knowledge for contributions to the society. It was jointly sponsored by APNNA, Japanese Neural Network Society (JNNS), and the 21st century COE program at Kyushu Institute of Technology.
The two volume set LNCS 4984 and LNCS 4985 constitutes the thoroughly refereed post-conference proceedings of the 14th International Conference on Neural Information Processing, ICONIP 2007, held in Kitakyushu, Japan, in November 2007, jointly with BRAINIT 2007, the 4th International Conference on Brain-Inspired Information Technology. The 228 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. The 116 papers of the first volume are organized in topical sections on computational neuroscience, learning and memory, neural network models, supervised/unsupervised/reinforcement learning, statistical learning algorithms, optimization algorithms, novel algorithms, as well as motor control and vision. The second volume contains 112 contributions related to statistical and pattern recognition algorithms, neuromorphic hardware and implementations, robotics, data mining and knowledge discovery, real world applications, cognitive and hybrid intelligent systems, bioinformatics, neuroinformatics, brain-conputer interfaces, and novel approaches.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitutes the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
|
You may like...
|