Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
This volume is the result of two international workshops; "Infinite Analysis 11 Frontier of Integrability" held at University of Tokyo, Japan in July 25th to 29th, 2011, and "Symmetries, Integrable Systems and Representations" held at Universite Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the readerwill find some recent
developments in the field of mathematical physics and their
interactions with several other domains.
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne 's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff 's classical theory on analytic difference equations on the other.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff's classical theory on analytic difference equations on the other.
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
|
You may like...
|