Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Ions are ubiquitous in chemical, technological, ecological and biological processes. Characterizing their role in these processes in the first place requires the evaluation of the thermodynamic parameters associated with the solvation of a given ion. However, due to the constraint of electroneutrality, the involvement of surface effects and the ambiguous connection between microscopic and macroscopic descriptions, the determination of single-ion solvation properties via both experimental and theoretical approaches has turned out to be a very difficult and highly controversial problem. This unique book provides an up-to-date, compact and consistent account of the research field of single-ion solvation thermodynamics that has over one hundred years of history and still remains largely unsolved. By reviewing the various approaches employed to date, establishing the relevant connections between single-ion thermodynamics and electrochemistry, resolving conceptual ambiguities, and giving an exhaustive data compilation (in the context of alkali and halide hydration), this book provides a consistent synthesis, in depth understanding and clarification of a large and sometimes very confusing research field. The book is primarily aimed at researchers (professors, postgraduates, graduates, and industrial researchers) concerned with processes involving ionic solvation properties (these are ubiquitous, eg. in physical/organic/analytical chemistry, electrochemistry, biochemistry, pharmacology, geology, and ecology). Because of the concept definitions and data compilations it contains, it is also a useful reference book to have in a university library. Finally, it may be of general interest to anyone wanting to learn more about ions and solvation. Key features: - discusses both experimental and theoretical approaches, and establishes the connection between them - provides both an account of the past research (covering over one hundred years) and a discussion of current directions (in particular on the theoretical side) - involves a comprehensive reference list of over 2000 citations - employs a very consistent notation (including table of symbols and unambiguous definitions of all introduced quantities) - provides a discussion and clarification of ambiguous concepts (ie. concepts that have not been defined clearly, or have been defined differently by different authors, leading to confusion in past literature) - encompasses an exhaustive data compilation (in the restricted context of alkali and halide hydration), along with recommended values (after critical analysis of this literature data) - is illustrated by a number of synoptic colour figures, that will help the reader to grasp the connections between different concepts in one single picture
This is currently the only book available on the development of knowledge-based, and related, expert systems in chemistry and toxicology. Written by a pioneer in the field, it shows how computers can work with qualitative information where precise numerical methods are not satisfactory. An underlying theme is the current concern in society about the conflicts between basing decisions on reasoned judgements and wanting precise decisions and measurable effectiveness. As well as explaining how the computer programs work, the book provides insights into how personal and political factors influence scientific progress. The introduction of regulations such as REACH in Europe and modifications to UN and OECD Guidelines on assessment of chemical hazard mean that the use of toxicity prediction is at a turning point. They put a heavy burden on the chemical industry but, for the first time, allow for the use of computer prediction to support or replace in vivo and in vitro experiments. There is increasing recognition among scientists and regulators that qualitative computer methods have much to offer and that in some circumstances they may be more reliable and informative than quantitative methods. This excellent introduction to a field where employment opportunities are growing is aimed at students, scientists and academics with a knowledge of chemistry.
The authors of this volume illustrate recent trends in the design and application of accurate force fields. 15 papers reflect the present questions including the strategies for (i) the inclusion of the polarization energy and (ii) an optimal parametrization of models. They highlight the directions to follow as new exciting fields of application emerge. Expert authors discuss the optimization and parametrization of new models, put in perspectives the actual importance of the polarization energy, as well as review or propose new models explicitly for incorporating polarization. They also present models that are applied to difficult systems or challenging fields of application. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format. This volume is of benefit in particular to those research groups and libraries that have chosen to have only electronic access to the journal. It also provides valuable content for all researchers in theoretical chemistry.
|
You may like...
|