Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Advances in optical technologies have made it possible to implement optical interconnections in future massively parallel processing systems. Photons are non-charged particles, and do not naturally interact. Consequently, there are many desirable characteristics of optical interconnects, e.g. high speed (speed of light), increased fanout, high bandwidth, high reliability, longer interconnection lengths, low power requirements, and immunity to EMI with reduced crosstalk. Optics can utilize free-space interconnects as well as guided wave technology, neither of which has the problems of VLSI technology mentioned above. Optical interconnections can be built at various levels, providing chip-to-chip, module-to-module, board-to-board, and node-to-node communications. Massively parallel processing using optical interconnections poses new challenges; new system configurations need to be designed, scheduling and data communication schemes based on new resource metrics need to be investigated, algorithms for a wide variety of applications need to be developed under the novel computation models that optical interconnections permit, and so on. Parallel Computing Using Optical Interconnections is a collection of survey articles written by leading and active scientists in the area of parallel computing using optical interconnections. This is the first book which provides current and comprehensive coverage of the field, reflects the state of the art from high-level architecture design and algorithmic points of view, and points out directions for further research and development.
This book uses automotive embedded systems as an example to introduce functional safety assurance and safety-aware cost optimization. The book explores functional safety assurance from the perspectives of verification, enhancement, and validation. The functional safety assurance methods implement a safe and efficient assurance system that integrates safety verification, enhancement, and validation. The assurance methods offered in this book could provide a reasonable and scientific theoretical basis for the subsequent formulation of automotive functional safety standards. The safety-aware cost optimization methods divide cost types according to the essential differences of various costs in system design and establish reasonable models based on different costs. The cost optimization methods provided in this book could give appropriate cost optimization solutions for the cost-sensitive automotive industry, thereby achieving effective cost management and control. Functional safety assurance methods and safety-aware cost optimization support each other and jointly build the architecture of functional safety design methodologies for automotive embedded systems. The work aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in hardware cost optimization and development cost optimization design methods based on ensuring functional safety in general.
This book will serve as a guide in understanding workflow scheduling techniques on computing systems such as Cluster, Supercomputers, Grid computing, Cloud computing, Edge computing, Fog computing, and the practical realization of such methods. It offers a whole new perspective and holistic approach in understanding computing systems' workflow scheduling. Expressing and exposing approaches for various process-centric cloud-based applications give a full coverage of most systems' energy consumption, reliability, resource utilization, cost, and application stochastic computation. By combining theory with application and connecting mathematical concepts and models with their resource management targets, this book will be equally accessible to readers with both Computer Science and Engineering backgrounds. It will be of great interest to students and professionals alike in the field of computing system design, management, and application. This book will also be beneficial to the general audience and technology enthusiasts who want to expand their knowledge on computer structure.
This book constitutes the refereed proceedings of the 25th International Conference on Parallel Computational Fluid Dynamics, ParCFD 2013, held in Changsha, China, in May 2013. The 35 revised full papers presented were carefully reviewed and selected from more than 240 submissions. The papers address issues such as parallel algorithms, developments in software tools and environments, unstructured adaptive mesh applications, industrial applications, atmospheric and oceanic global simulation, interdisciplinary applications and evaluation of computer architectures and software environments.
Advances in optical technologies have made it possible to implement optical interconnections in future massively parallel processing systems. Photons are non-charged particles, and do not naturally interact. Consequently, there are many desirable characteristics of optical interconnects, e.g. high speed (speed of light), increased fanout, high bandwidth, high reliability, longer interconnection lengths, low power requirements, and immunity to EMI with reduced crosstalk. Optics can utilize free-space interconnects as well as guided wave technology, neither of which has the problems of VLSI technology mentioned above. Optical interconnections can be built at various levels, providing chip-to-chip, module-to-module, board-to-board, and node-to-node communications. Massively parallel processing using optical interconnections poses new challenges; new system configurations need to be designed, scheduling and data communication schemes based on new resource metrics need to be investigated, algorithms for a wide variety of applications need to be developed under the novel computation models that optical interconnections permit, and so on. Parallel Computing Using Optical Interconnections is a collection of survey articles written by leading and active scientists in the area of parallel computing using optical interconnections. This is the first book which provides current and comprehensive coverage of the field, reflects the state of the art from high-level architecture design and algorithmic points of view, and points out directions for further research and development.
This book focuses on scheduling algorithms for parallel applications on heterogeneous distributed systems, and addresses key scheduling requirements - high performance, low energy consumption, real time, and high reliability - from the perspectives of both theory and engineering practice. Further, it examines two typical application cases in automotive cyber-physical systems and cloud systems in detail, and discusses scheduling challenges in connection with resource costs, reliability and low energy. The book offers a comprehensive and systematic treatment of high-performance, low energy consumption, and high reliability issues on heterogeneous distributed systems, making it a particularly valuable resource for researchers, engineers and graduate students in the fields of computer science and engineering, information science and engineering, and automotive engineering, etc. The wealth of motivational examples with figures and tables make it easy to understand.
|
You may like...Not available
|