Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 21 of 21 matches in All Departments
This present book includes a set of selected revised and extended versions of the best papers presented at the 11th International Joint Conference on Computational Intelligence (IJCCI 2019) - held in Vienna, Austria, from 17 to 19 September 2019. The authors focus on three outstanding fields of Computational Intelligence through the selected panel, namely Evolutionary Computation, Fuzzy Computation and Neural Computation. Besides presenting the recent advances of the selected areas, the book aims to aggregate new and innovative solutions for confirmed researchers and, on the other hand, to provide a source of information and/or inspiration for young interested researchers or learners in the ever-expanding and current filed of Computational Intelligence. It constitutes a precious provision of knowledge for individual researchers as well as represents a valuable sustenance for collective use in academic libraries (of universities and engineering schools) relating innovative techniques in various fields of applications.
This book presents revised and extended versions of the best papers presented at the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), held in Funchal, Madeira, from 1 to 3 November 2017. It focuses on four of the main fields of computational intelligence: evolutionary computation, fuzzy computation, neural computation, and cognitive and hybrid systems. As well as presenting the recent advances of these areas, it provides new and innovative solutions for established researchers and a source of information and/or inspiration those new to the field. Discussing innovative techniques in various application areas, it is a useful resource for individual researchers and a valuable addition to academic libraries (of universities and engineering schools).
This present book includes a set of selected revised and extended versions of the best papers presented at the 10th International Joint Conference on Computational Intelligence (IJCCI 2018), held in Seville, Spain, from 18 to 20 September 2018, which covers four thriving fields in Computational Intelligence: Evolutionary Computation, Fuzzy Computation, Neural Computation, and Cognitive and Hybrid Systems. Besides presenting the recent advances in these areas, the book aims, on the one hand, to aggregate new and innovative solutions for confirmed researchers and, on the other hand, to provide a source of information and/or inspiration for young researchers or learners interested in the ever-increasing and current field of Computational Intelligence. This book constitutes a precious provision of knowledge for individual researchers as well as representing a valuable sustenance for collective use in academic libraries (of universities and engineering schools) relating innovative techniques in various fields of applications.
'if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory input in machine systems the nature of consciousness the controversial culturing of human neurons. Exploring issues at the heart of the subject, this book is suitable for anyone interested in AI, and provides an illuminating and accessible introduction to this fascinating subject.
This significantly revised edition presents a broad introduction to Control Systems and balances new, modern methods with the more classical. It is an excellent text for use as a first course in Control Systems by undergraduate students in all branches of engineering and applied mathematics. The book contains: A comprehensive coverage of automatic control, integrating digital and computer control techniques and their implementations, the practical issues and problems in Control System design; the three-term PID controller, the most widely used controller in industry today; numerous in-chapter worked examples and end-of-chapter exercises. This second edition also includes an introductory guide to some more recent developments, namely fuzzy logic control and neural networks.
Due to the rapid increase in readily available computing power, a corre sponding increase in the complexity of problems being tackled has occurred in the field of systems as a whole. A plethora of new methods which can be used on the problems has also arisen with a constant desire to deal with more and more difficult applications. Unfortunately by increasing the ac curacy in models employed along with the use of appropriate algorithms with related features, the resultant necessary computations can often be of very high dimension. This brings with it a whole new breed of problem which has come to be known as "The Curse of Dimensionality" . The expression "Curse of Dimensionality" can be in fact traced back to Richard Bellman in the 1960's. However, it is only in the last few years that it has taken on a widespread practical significance although the term di mensionality does not have a unique precise meaning and is being used in a slightly different way in the context of algorithmic and stochastic complex ity theory or in every day engineering. In principle the dimensionality of a problem depends on three factors: on the engineering system (subject), on the concrete task to be solved and on the available resources. A system is of high dimension if it contains a lot of elements/variables and/or the rela tionship/connection between the elements/variables is complicated."
The last few decades have witnessed tremendous developments in nonlinear control theory. One of the most important of these is the model-based method of feedback linearisation in which a nonlinear system is transformed into a linear system by means of state feedback and nonlinear transformations. After feedback linearisation, a system can be dealt with by linear controller design. The extension of these techniques to include MIMO systems allows for the further simplification of controller design by decoupling the system. Strategies for Feedback Linearisation demonstrates this powerful technique in the light of research on neural networks which allow the identification of nonlinear models without the complicated and costly development of models based on physical laws. Dynamic or recurrent neural networks have inherent properties that allow them to approximate nonlinear dynamic systems. Strategies for the identification of nonlinear systems using such neural networks are presented in this monograph together with the use of such models for the design and application of input-output linearisation and decoupling methods. Strategies for Feedback Linearisation is written to serve academic and industrial researchers in non-linear control and system identification and practising control engineers interested in their application to real-world industrial systems. The reader will gain a balanced view of theoretical and practical issues: relevant mathematical proofs are provided as are case studies illustrating design and application issues.
This significantly revised edition presents a broad introduction to Control Systems and balances new, modern methods with the more classical. It is an excellent text for use as a first course in Control Systems by undergraduate students in all branches of engineering and applied mathematics. The book contains: A comprehensive coverage of automatic control, integrating digital and computer control techniques and their implementations, the practical issues and problems in Control System design; the three-term PID controller, the most widely used controller in industry today; numerous in-chapter worked examples and end-of-chapter exercises. This second edition also includes an introductory guide to some more recent developments, namely fuzzy logic control and neural networks.
This present book includes a set of selected revised and extended versions of the best papers presented at the 11th International Joint Conference on Computational Intelligence (IJCCI 2019) - held in Vienna, Austria, from 17 to 19 September 2019. The authors focus on three outstanding fields of Computational Intelligence through the selected panel, namely Evolutionary Computation, Fuzzy Computation and Neural Computation. Besides presenting the recent advances of the selected areas, the book aims to aggregate new and innovative solutions for confirmed researchers and, on the other hand, to provide a source of information and/or inspiration for young interested researchers or learners in the ever-expanding and current filed of Computational Intelligence. It constitutes a precious provision of knowledge for individual researchers as well as represents a valuable sustenance for collective use in academic libraries (of universities and engineering schools) relating innovative techniques in various fields of applications.
This present book includes a set of selected revised and extended versions of the best papers presented at the 10th International Joint Conference on Computational Intelligence (IJCCI 2018), held in Seville, Spain, from 18 to 20 September 2018, which covers four thriving fields in Computational Intelligence: Evolutionary Computation, Fuzzy Computation, Neural Computation, and Cognitive and Hybrid Systems. Besides presenting the recent advances in these areas, the book aims, on the one hand, to aggregate new and innovative solutions for confirmed researchers and, on the other hand, to provide a source of information and/or inspiration for young researchers or learners interested in the ever-increasing and current field of Computational Intelligence. This book constitutes a precious provision of knowledge for individual researchers as well as representing a valuable sustenance for collective use in academic libraries (of universities and engineering schools) relating innovative techniques in various fields of applications.
'if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory input in machine systems the nature of consciousness the controversial culturing of human neurons. Exploring issues at the heart of the subject, this book is suitable for anyone interested in AI, and provides an illuminating and accessible introduction to this fascinating subject.
Can you tell the difference between talking to a human and talking to a machine? Or, is it possible to create a machine which is able to converse like a human? In fact, what is it that even makes us human? Turing's Imitation Game, commonly known as the Turing Test, is fundamental to the science of artificial intelligence. Involving an interrogator conversing with hidden identities, both human and machine, the test strikes at the heart of any questions about the capacity of machines to behave as humans. While this subject area has shifted dramatically in the last few years, this book offers an up-to-date assessment of Turing's Imitation Game, its history, context and implications, all illustrated with practical Turing tests. The contemporary relevance of this topic and the strong emphasis on example transcripts makes this book an ideal companion for undergraduate courses in artificial intelligence, engineering or computer science.
Due to the rapid increase in readily available computing power, a corre sponding increase in the complexity of problems being tackled has occurred in the field of systems as a whole. A plethora of new methods which can be used on the problems has also arisen with a constant desire to deal with more and more difficult applications. Unfortunately by increasing the ac curacy in models employed along with the use of appropriate algorithms with related features, the resultant necessary computations can often be of very high dimension. This brings with it a whole new breed of problem which has come to be known as "The Curse of Dimensionality" . The expression "Curse of Dimensionality" can be in fact traced back to Richard Bellman in the 1960's. However, it is only in the last few years that it has taken on a widespread practical significance although the term di mensionality does not have a unique precise meaning and is being used in a slightly different way in the context of algorithmic and stochastic complex ity theory or in every day engineering. In principle the dimensionality of a problem depends on three factors: on the engineering system (subject), on the concrete task to be solved and on the available resources. A system is of high dimension if it contains a lot of elements/variables and/or the rela tionship/connection between the elements/variables is complicated."
Using relevant mathematical proofs and case studies illustrating design and application issues, this book demonstrates this powerful technique in the light of research on neural networks, which allow the identification of nonlinear models without the complicated and costly development of models based on physical laws.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, .... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Within the control community there has been much discussion of and interest in the new Emerging Technologies and Methods. Neural networks along with Fuzzy Logic and Expert Systems is an emerging methodology which has the potential to contribute to the development of intelligent control technologies. This volume of some thirteen chapters edited by Kenneth Hunt, George Irwin and Kevin Warwick makes a useful contribution to the literature of neural network methods and applications. The chapters are arranged systematically progressing from theoretical foundations, through the training aspects of neural nets and concluding with four chapters of applications. The applications include problems as diverse as oven tempera ture control, and energy/load forecasting routines. We hope this interesting but balanced mix of material appeals to a wide range of readers from the theoretician to the industrial applications engineer.
In almost all areas of science and engineering, the use of computers and microcomputers has, in recent years, transformed entire subject areas. What was not even considered possible a decade or two ago is now not only possible but is also part of everyday practice. As a result, a new approach usually needs to be taken (in order) to get the best out of a situation. What is required is now a computer's eye view of the world. However, all is not rosy in this new world. Humans tend to think in two or three dimensions at most, whereas computers can, without complaint, work in n dimensions, where n, in practice, gets bigger and bigger each year. As a result of this, more complex problem solutions are being attempted, whether or not the problems themselves are inherently complex. If information is available, it might as well be used, but what can be done with it? Straightforward, traditional computational solutions to this new problem of complexity can, and usually do, produce very unsatisfactory, unreliable and even unworkable results. Recently however, artificial neural networks, which have been found to be very versatile and powerful when dealing with difficulties such as nonlinearities, multivariate systems and high data content, have shown their strengths in general in dealing with complex problems. This volume brings together a collection of top researchers from around the world, in the field of artificial neural networks."
This volume is based on a seminar concerned with advanced methods in adaptive control for industrial applications which was held in Prague in May 1990 and which brought together experts in the UK and Czechoslovakia in order to suggest solutions to specific current and anticipated problems faced by industry. A number of contributions were also aimed at reflecting possible trends in the more distant future, by looking in depth at more specific issues. While the papers included in the volume are of a research or application nature, two or three can also be utilized in a tutorial mode. The aspects of adaptive control considered are viewed from the point of view of real time implementation and system resilience. The book is intended for the use of academics in the above fields and to industrialists.
This book presents revised and extended versions of the best papers presented at the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), held in Funchal, Madeira, from 1 to 3 November 2017. It focuses on four of the main fields of computational intelligence: evolutionary computation, fuzzy computation, neural computation, and cognitive and hybrid systems. As well as presenting the recent advances of these areas, it provides new and innovative solutions for established researchers and a source of information and/or inspiration those new to the field. Discussing innovative techniques in various application areas, it is a useful resource for individual researchers and a valuable addition to academic libraries (of universities and engineering schools).
Trees are an important part of our planet. But what on earth are they all about? Trees are not only one of the oldest living species on earth but they are also one of the most important. Essential for life and providing us with food, oxygen and shelter, without trees our planet would be a very different place. Discover all you need to know about these incredible plants and their place in our world in this fascinating book filled with fun experiments, investigations and hands-on tasks. Find out how trees are made and how they grow so tall. Then create a tree hotel and see what wildlife comes to stay! This brilliant information book features a mixture of explore, investigate and create pages which encourage children to learn about the natural world in an engaging, hands-on way.
Practitioners and scholars explore ethical, social, and conceptual issues arising in relation to such devices as fitness monitors, neural implants, and a toe-controlled computer mouse. Body-centered computing now goes beyond the "wearable" to encompass implants, bionic technology, and ingestible sensors-technologies that point to hybrid bodies and blurred boundaries between human, computer, and artificial intelligence platforms. Such technologies promise to reconfigure the relationship between bodies and their environment, enabling new kinds of physiological interfacing, embodiment, and productivity. Using the term embodied computing to describe these devices, this book offers essays by practitioners and scholars from a variety of disciplines that explore the accompanying ethical, social, and conceptual issues. The contributors examine technologies that range from fitness monitors to neural implants to a toe-controlled mouse. They discuss topics that include the policy implications of ingestibles; the invasive potential of body area networks, which transmit data from bodily devices to the internet; cyborg experiments, linking a human brain directly to a computer; the evolution of the ankle monitor and other intrusive electronic monitoring devices; fashiontech, which offers users an aura of "cool" in exchange for their data; and the "final frontier" of technosupremacism: technologies that seek to read our minds. Taken together, the essays show the importance of considering embodied technologies in their social and political contexts rather than in isolated subjectivity or in purely quantitative terms. Contributors Roba Abbas, Andrew Iliadis, Gary Genosko, Suneel Jethani, Deborah Lupton, Katina Michael, M. G. Michael, Marcel O'Gorman, Maggie Orth, Isabel Pedersen, Christine Perakslis, Kevin Warwick, Elizabeth Wissinger
Research in artificial intelligence has developed many techniques and methodologies that can be either adapted or used directly to solve complex power system problems. A variety of such problems are covered in this book including reactive power control, alarm analysis, fault diagnosis, protection systems and load forecasting. Methods such as knowledge-based (expert) systems, fuzzy logic, neural networks and genetic algorithms are all first introduced and then investigated in terms of their applicability in the power systems field. The book, therefore, serves as both an introduction to the use of artificial intelligence techniques for those from a power systems background and as an overview of the power systems implementation area for those from an artificial intelligence computing or control background. It is structured so that it is suitable for various levels of reader, covering basic principles as well as applications and case studies. The most popular methods and the most fruitful application fields are considered in more detail. The book contains contributions from top international authors and will be an extremely useful text for all those with an interest in the field.
|
You may like...
|