Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
examples are presented. These chapters are intended to introduce the reader to the programs. The program structure and models used will be described only briefly. Since these programs are in the public domain (with the exception of the parasitic simulation programs), the reader is referred to the manuals for more details. In this second edition, the process program SUPREM III has been added to Chapter 2. The device simulation program PISCES has replaced the program SIFCOD in Chapter 3. A three-dimensional parasitics simulator FCAP3 has been added to Chapter 4. It is clear that these programs or other programs with similar capabilities will be indispensible for VLSI/ULSI device developments. Part B of the book presents case studies, where the application of simu lation tools to solve VLSI device design problems is described in detail. The physics of the problems are illustrated with the aid of numerical simulations. Solutions to these problems are presented. Issues in state-of-the-art device development such as drain-induced barrier lowering, trench isolation, hot elec tron effects, device scaling and interconnect parasitics are discussed. In this second edition, two new chapters are added. Chapter 6 presents the methodol ogy and significance of benchmarking simulation programs, in this case the SUPREM III program. Chapter 13 describes a systematic approach to investi gate the sensitivity of device characteristics to process variations, as well as the trade-otIs between different device designs."
This book is concerned with the use of Computer-Aided Design (CAD) in the device and process development of Very-Large-Scale-Integrated Circuits (VLSI). The emphasis is in Metal-Oxide-Semiconductor (MOS) technology. State-of-the-art device and process development are presented. This book is intended as a reference for engineers involved in VLSI develop ment who have to solve many device and process problems. CAD specialists will also find this book useful since it discusses the organization of the simula tion system, and also presents many case studies where the user applies the CAD tools in different situations. This book is also intended as a text or reference for graduate students in the field of integrated circuit fabrication. Major areas of device physics and processing are described and illustrated with Simulations. The material in this book is a result of several years of work on the implemen tation of the simulation system, the refinement of physical models in the simulation programs, and the application of the programs to many cases of device developments. The text began as publications in journals and con ference proceedings, as weil as lecture notes for a Hewlett-Packard internal CAD course. This book consists of two parts. It begins with an overview of the status of CAD in VLSI, which pointsout why CAD is essential in VLSI development. Part A presents the organization of the two-dimensional simulation system."
examples are presented. These chapters are intended to introduce the reader to the programs. The program structure and models used will be described only briefly. Since these programs are in the public domain (with the exception of the parasitic simulation programs), the reader is referred to the manuals for more details. In this second edition, the process program SUPREM III has been added to Chapter 2. The device simulation program PISCES has replaced the program SIFCOD in Chapter 3. A three-dimensional parasitics simulator FCAP3 has been added to Chapter 4. It is clear that these programs or other programs with similar capabilities will be indispensible for VLSI/ULSI device developments. Part B of the book presents case studies, where the application of simu lation tools to solve VLSI device design problems is described in detail. The physics of the problems are illustrated with the aid of numerical simulations. Solutions to these problems are presented. Issues in state-of-the-art device development such as drain-induced barrier lowering, trench isolation, hot elec tron effects, device scaling and interconnect parasitics are discussed. In this second edition, two new chapters are added. Chapter 6 presents the methodol ogy and significance of benchmarking simulation programs, in this case the SUPREM III program. Chapter 13 describes a systematic approach to investi gate the sensitivity of device characteristics to process variations, as well as the trade-otIs between different device designs."
|
You may like...
|