Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This volume contains refereed papers related to the lectures and talks given at a conference held in Siena (Italy) in June 2004. Also included are research papers that grew out of discussions among the participants and their collaborators. All the papers are research papers, but some of them also contain expository sections which aim to update the state of the art on the classical subject of special projective varieties and their applications and new trends like phylogenetic algebraic geometry. The topic of secant varieties and the classification of defective varieties is central and ubiquitous in this volume. Besides the intrinsic interest of the subject, it turns out that it is also relevant in other fields of mathematics like expressions of polynomials as sums of powers, polynomial interpolation, rank tensor computations, Bayesian networks, algebraic statistics and number theory.
The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinoya Rorbuer, Svolvaer in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kahler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kahler manifolds.
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
This book is an expanded version of lectures given at a summer school on symplectic geometry in Nordfjordeid, Norway, in June 2001. The unifying feature of the book is an emphasis on Calabi-Yau manifolds. The first part discusses holonomy groups and calibrated submanifolds, focusing on special Lagrangian submanifolds and the SYZ conjecture. The second studies Calabi-Yau manifolds and mirror symmetry, using algebraic geometry. The final part describes compact hyperkahler manifolds, which have a geometric structure very closely related to Calabi-Yau manifolds. The book is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory and intended as an introductory text, requiring only limited background knowledge. Proofs or sketches are given for many important results. Moreover, exercises are provided.
|
You may like...
|