![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 11771 matches in All Departments
Amongst thermoplastic biodegradable polymers, polylactic acid (PLA) has been widely used in many different applications but it still has limited use in various industrial sectors such as medical, packaging, textile, water, and wastewater treatment.To increase the use of these materials more information is needed on their properties, characterization, processing, safety, and sustainability. Natural Fibre-reinforced PLA-Based Composites: Processing, Characterization and Applications reviews the thermal, physico-chemical, fire retardant, mechanical, tribological, biodegradable and anti-microbial properties of these materials. Fabrication of PLA-based biocomposites using advanced fabrication techniques like additive manufacturing and electrospinning are also discussed in detail.The book will be a valuable reference for academic and industrial researchers, materials scientists and engineers working in the development of polymers, bioplastics, polymer composites and biocomposites as well as industrial manufacturers.
Dosage Forms, Formulation Developments and Regulations, Volume One in the Recent and Future Trends in Pharmaceutics series, explores aspects of pharmaceutics, with an original approach focused on technology, novelties and future trends in the field. The book discusses the most recent developments in pharmaceutical preformulation and formulation studies, biopharmaceutics and novel pharmaceutical formulations, regulatory affairs, and good manufacturing practices. Exciting areas such as formulation strategies, optimization techniques, the biopharmaceutical classification system, and pharmaceutical aerosols are included. The field of pharmaceutics is highly dynamic and rapidly expanding day-by-day, so it demands a variety of amplified efforts for designing and developing pharmaceutical processes and formulation strategies. This is an essential reference for researchers in academia and industry as well as advanced graduate students in pharmaceutics.
Bioconjugated Materials Part 2, Volume 103 in the Comprehensive Analytical Chemistry series, highlights new advances in the field, with this new volume presenting interesting chapters on bioconjugated materials. Each chapter is written by an international board of authors.
Treatment Landscape of Targeted Therapies in Oncology: Challenges and Opportunities provides up-to-date knowledge on antitumor-targeted therapies and immunotherapy. The book's chapters are written by researchers dynamically working/focusing on cancer treatment. The content is designed to help those who are new to the field (beginners) and various specialized scientists and researchers involved in cancer research. For decades, the hallmark of cancer treatment has been conventional chemotherapy. But with the rapid increase in our understanding of the immune system, more and more small molecules, peptides, recombinant antibodies, vaccines and cellular therapeutic modalities are being applied to manipulate the immune response for cancer treatment.
Biocontrol Agents for Improved Agriculture, a volume in the Plant and Soil Microbiome series, presents both an advanced and current description of the important role of plant and soil microbiome in plant disease management. Including the latest biotechnological interventions for harnessing plant and soil microbiome and their potential in controlling plant pathogen/ disease, as well as the commercialization of biocontrol products and exploration of microbial derived bioactive compounds, this book provides an important reference on the challenges of biocontrol products. Sections explore the bacterial and fungal species successfully applied as plant and soil inoculant for the effective management of plant diseases. As these microbial biocontrol agents not only suppress the plant disease, but also enhance the growth or agricultural production in sustainable ways, the book focuses on the molecular aspect of plant- pathogen interactions and their biocontrol strategies via the use of plant and soil microbiome. This book is an important reference for those seeking sustainable, safe options for protecting against microbial agricultural loss and environmental damage.
Bioenergy Engineering: Fundamentals, Methods, Modelling, and Applications presents the fundamental principles, recent developments, innovative state-of the-art technologies, challenges, solutions and future perspectives on the production of biofuels and bioenergy. Balancing the scientific and engineering aspects of biofuels production, the book guides readers through the chemical kinetics, modeling, thermodynamics, unit operations and technological advancements in fuel processing from conventional and alternative resources. Each chapter of the book starts with the fundamentals and goes on to assess the latest technologies for the production of renewable fuels on topics. Sections cover biomass utilization, biomass-to-liquid conversion technologies (pyrolysis, liquefaction, solid-state fermentation and submerged fermentation), biomass-to-gas conversion technologies (thermochemical gasification, subcritical and supercritical water gasification, and methanation), gas-to-liquid conversion technologies (Fischer-Tropsch synthesis), carbonization, transesterification, organic transformation, carbon-carbon and carbon-heteroatom coupling reactions, oxidation, reforming, hydrotreating technologies (hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydro dearomatization and hydro demetalization), nanocatalysis and biocatalysis (enzymatic hydrolysis), and much more.
Microbiome Therapeutics: Personalized Therapy Beyond Conventional Approaches addresses the current knowledge and landscape of microbiome therapeutics, providing an overview of existing applications in health and disease as well as potential future directions of microbiome modulations and subsequent translation to the global industry and market. This important reference provides the most current status of microbiome therapeutics as well as possible future perspectives through coverage of topics including the application of microbiome therapeutics; various additive, subtractive and modulatory approaches; microbiome composition of health and diseases, insights into live bio-therapeutics and the clinical data supporting their efficacy. Case studies are provided throughout the book to further define, describe and evaluate microbiome therapeutics success and failure.
Plant RNA Viruses: Molecular Pathogenesis and Management provides wide-ranging coverage on the recognition and signaling events between plants and RNA viruses. The book examines the molecular biology of signaling, host-virus interaction, RNA virus diversity, and how plants and cellular pathogens interact. Sections cover Virus Diversity and Diagnosis, Virus-Host Interactions and Virus Management. Specific chapters discuss classification and nomenclature of viruses, detail the molecular characteristics of viral genomes, highlight the viral manipulation of cellular key regulatory systems for successful virus infection, and discuss the movement of plant viruses into plant cells. Additional topics include RNA plant viruses and host interaction, detection and diversity of plant RNA viruses, and strategies for combating and management of plant viruses. With contributions from an international group of experts, the book is a comprehensive reference for those in research, academia, industry and anybody engaging in the study of plant viruses at the molecular level.
Advanced Nanoformulations: Theranostic Nanosystems, Volume Three examines the applications of nanotherapeutic systems and nanodiagnostics in relation to polymeric nanosystems. In the last decade, numerous biopolymers have been utilized to prepare polymeric nanosystems for therapeutic applications. These biopolymers include polylactic acid, polylactide-co-glycolide, polycaprolactone, acrylic polymers, cellulose and cellulose derivatives, alginates, chitosan, gellan gum, gelatin, albumin, chontroitin sulfate, hyaluronic acid, guar gum, gum Arabic, gum tragacanth, xanthan gum, and starches. Besides these biopolymers, grafted polymers are also being used as advanced polymeric materials to prepare many theranostic nanocarriers and nanoformulations. This book explores the array of polymeric nanosystems to understand therapeutic potentials. It will be useful to pharmaceutical scientists, including industrial pharmacists and analytical scientists, health care professionals, and regulatory scientists actively involved in the pharmaceutical product and process development of tailor-made polysaccharides in drug delivery applications.
Microbial Biomolecules: Emerging Approach in Agriculture, Pharmaceuticals and Environment Management explores and compiles new aspects of microbial-based biomolecules such as microbial enzymes, microbial metabolites, microbial surfactants, exopolysaccharides, and bioactive compounds and their potential applications in the field of health-related issues, sustainable agriculture and environment contamination management. Written for researchers, scientists, and graduate and PhD students in the areas of Microbiology, Biotechnology, Environmental Science and Pharmacology, this book covers the urgent need to explore eco-friendly and sustainable approaches to healthcare, agriculture and environmental contamination management.
Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation. The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances.
Autophagy and Metabolism: Potential Target for Cancer Therapy presents updates on autophagy in cancer metabolism and how it can be used to develop new, more efficient treatments. Written by experts in the field, the book presents recent research and explains how to translate it to the clinical setting. Sections discuss tumor cell metabolism and autophagy as therapeutic targets, autophagy regulation in cancer, signaling pathways in metabolic dysregulation in solid tumors, metabolic stress and cell death pathways, and the role of the tumor microenvironment. In addition, topics cover combined targeting autophagy, metabolism for cancer therapy, and the autophagy effect on immune cell metabolism. This will be a valuable resource for researchers, oncologists, graduate students, and members of the biomedical field who are interested in learning more about the interaction between autophagy and cancer metabolism.
The microbial ecosystem provides an indigenous system for improving plant growth, health and stress resilience. Plant microbiota, including isolated microbial communities, have been studied to further understand the functional capacities, ecological structure and dynamics of the plant-microbe interaction. Due to climatic changes, there is an urgent need to bring microbial innovations into practice. Mitigation of Plant Abiotic Stress by Microorganisms: Applicability and Future Directions is a comprehensive review of the different strategies available to improve the plant microbiome. Chapters include key topics such as: harnessing endophytic microbial diversity, microbial genes for improving abiotic stress tolerance, and microbial bioformulations. Putting these strategies into practice can have varying success in the field, so it is crucial that scientists are equipped with the knowledge of which microorganisms are needed, as well as the use and suitability of delivery approaches and formulations. This title will be an essential read for researchers and students interested in plant microbial technologies and plant bio stimulants, plant pathology, biocontrol, agronomy, and environmental mediation.
Environmental change is affecting the world's agricultural productivity. This is coupled with an increase in population: according to the United Nations Department for Economic and Social Affairs, the global population is estimated to reach 9.7 billion by 2050. Therefore, the current situation requires that we develop climate-smart technologies to improve crop productivity to sustain the ever-rising global population. Current-day farmers are introducing a considerable amount of agrochemicals to enhance crop productivity. Indiscriminate agrochemical application has altered not only the soil's physic-chemical and biological properties but also affected human health through food chain contamination. Cyanobacteria, under these changing environmental conditions, may help to resolve the problem significantly without changing the natural soil properties. In spite of their well-known stress tolerance potential, most of the cyanobacterial stress management and signaling pathways are yet to be fully characterized. Therefore, there is an urgent need to explore cyanobacterial metabolism under stress as well as their regulatory pathways to exploit them for sustainable agriculture. In recent decades, the application of cyanobacteria has attracted scientists because of uniqueness, better adaptability, and synthetic products. Diverse cyanobacterial communities with the ability to fix atmospheric nitrogen, together with their photosynthetic properties, have demonstrated their application under field conditions. Several cyanobacterial species have thus been exploited to enhance soil fertility, mitigate biotic and abiotic stress, and contamination management. Cyanobacterial Lifestyle and its Applications in Biotechnology has been designed to discuss different aspects of cyanobacterial physiology with the aim of helping to provide a better understanding of advanced cyanobacterial molecular biology and their metabolism to uncover the potential of cyanobacteria in the tailoring of stress smart crops for sustainable agriculture. Chapters include valuable information about the role of cyanobacteria in the evolution of life, cyanobacterial photosynthesis, stress-tolerant cyanobacterium, biological nitrogen fixation, circadian rhythms, genetics and molecular biology of abiotic stress responses.
Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume One presents the technological options for energy and resources recovery from all types of organic wastes. The book addresses municipal and industrial sludges, municipal solid waste, agro-residue, animal wastes, industrial waste, forestry residue, and algal biomass, and provides a global overview of biomass waste production, waste handling issues and related GHG emissions and climate change, legislative waste management guidelines, biomass composition, and conventional methods for biomass waste treatment. For each biomass waste, chapters cover energy and bio-based products recovery, pre-treatment methods, process microbiology, community dynamics, co-digestion, reactor design and configuration, and techno-economic evaluation. Case studies on upscaling technology and pilot and industry scale implementation are included, alongside step-by-step calculations that integrate practical field data and regulatory requirements into the environmental design process. Finally, future trends and developments in advanced biotechnological concepts for biomass waste processing and management are also discussed.
Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice.
Calcium Transport Elements in Plants discusses the role of calcium in plant development and stress signaling, the mechanism of Ca2+ homeostasis across plant membranes, and the evolution of Ca2+/cation antiporter (CaCA) superfamily proteins. Additional sections cover genome-wide analysis of Annexins and their roles in plants, the roles of calmodulin in abiotic stress responses, calcium transport in relation to plant nutrition/biofortification, and much more. Written by leading experts in the field, this title is an essential resource for students and researchers that need all of the information on calcium transport elements in one place. Calcium transport elements are involved in various structural, physiological and biochemical processes or signal transduction pathways in response to various abiotic and biotic stimuli. Development of high throughput sequencing technology has favored the identification and characterization of numerous gene families in plants in recent years, including the calcium transport elements.
The growth of human population has increased the demand for improved yield and quality of crops and horticultural plants. However, plant productivity continues to be threatened by stresses such as heat, cold, drought, heavy metals, UV radiations, bacterial and fungal pathogens, and insect pests. Long noncoding RNAs are associated with various developmental pathways, regulatory systems, abiotic and biotic stress responses and signaling, and can provide an alternative strategy for stress management in plants. Long Noncoding RNAs in Plants: Roles in development and stress provides the most recent advances in LncRNAs, including identification, characterization, and their potential applications and uses. Introductory chapters include the basic features and brief history of development of lncRNAs studies in plants. The book then provides the knowledge about the lncRNAs in various important agricultural and horticultural crops such as cereals, legumes, fruits, vegetables, and fiber crop cotton, and their roles and applications in abiotic and biotic stress management.
Clinical Molecular Medicine: Principles and Practice presents the latest scientific advances in molecular and cellular biology, including the development of new and effective drug and biological therapies and diagnostic methods. The book provides medical and biomedical students and researchers with a clear and clinically relevant understanding on the molecular basis of human disease. With an increased focus on new practice concepts, such as stratified, personalized and precision medicine, this book is a valuable and much-needed resource that unites the core principles of molecular biology with the latest and most promising genomic advances.
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case.
Enzymes Conjugated to Graphene, Volume 609 in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on Enzyme immobilization, Detection of Urea, Enzyme immobilization Enzyme immobilization, PAMAM dendrimer modified reduced graphene oxide post functionalized by horseradish peroxidase for biosensing H2O2, HRP immobilized for LEV detection, Enzyme immobilization, Graphene biocatalysts, Enzyme immobilization, Interactions, Enzyme immobilization, GQD, Enzyme Immobilization, and Enzyme immobilization on functionalized graphene oxide nanosheets.
Darwin's Pangenesis and its Rediscovery Part B explores Darwin's Pangenesis, an expanded cell theory and unified theory of heredity and variation from over 150 years ago that strengthened his theory of evolution and explained many phenomena of life. Now, new discoveries on circulating DNA, mobile RNAs, prions and extracellular vesicles are providing striking evidence for the chemical existence of Darwin's imaginary gemmules. In addition, new evidence for the inheritance of acquired characters, graft hybridization, and many other phenomena that Pangenesis supposedly explains are progressing, and are hence explored in this comprehensive volume. Specific chapters in this new volume include Darwin and Mendel: The Historical Connection, Darwin's Pangenesis and Graft Hybridization, Darwin's Pangenesis and Medical Genetics, Darwin's Pangenesis and Certain Anomalous Phenomena, and Natural Selection and Pangenesis: The Darwinian Synthesis.
Darwin's Pangenesis and Its Rediscovery Part A highlights the findings of Darwin's Pangenesis, an expanded cell theory and unified theory of heredity and variation that strengthened his theory of evolution and explained many phenomena of life. Now, new advances and the discovery of circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles are providing new breakthroughs, thus increasing evidence on the inheritance of acquired characters, graft hybridization, and many other phenomena that Pangenesis suggests. Sections of note in this volume include the rationale, criticisms, influence and recent molecular evidence of Darwin's Pangenesis, as well as its relation to the inheritance of acquired characters, which is often included under the blanket term "transgenerational epigenetic inheritance."
Pericyclic Chemistry: Orbital Mechanisms and Stereochemistry is a complete guide to the topic that is ideal for graduate students, advanced undergraduate students and researchers in organic chemistry. An introduction to molecular orbital theory and relevant stereochemical concepts is provided as background, with all four classes of pericyclic reactions discussed and illustrated with orbital picture representations. Also included are chapters on cycloadditions, the most versatile class, and electrocyclic reactions, sigmatropic rearrangements and group transfer reactions. A separate chapter on the construction of correlation diagrams is also included, emphasizing a practical, hands on approach. Author Dipak Kumar Mandal brings over 30 years of teaching experience to the topic and illuminates pericyclic chemistry with a clear and fresh perspective.
Actinobacteria: Diversity and Biotechnological Applications: New and Future Developments in Microbial Biotechnology and Bioengineering, a volume in the series New and Future Developments in Microbial Biotechnology and Bioengineering series, offers the latest on the biotechnology of Kingdom actinobacteria, covering unique niches like their endosphere, rhizospheric soil and contaminated sites, etc. The book also covers the bioactive secondary metabolites obtained from actinobacteria and describes the application of microorganism (Actinobacteria) in plant growth promotion and in environmental cleanup. Finally, the book describes the biocontrol aspects of actinobacteria and how they can control fungal phytopathogens and the production of secondary metabolites. |
![]() ![]() You may like...
Beauty And The Beast - Blu-Ray + DVD
Emma Watson, Dan Stevens, …
Blu-ray disc
R313
Discovery Miles 3 130
|