Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Time Series Analysis With Applications in R, Second Edition, presents an accessible approach to understanding time series models and their applications. Although the emphasis is on time domain ARIMA models and their analysis, the new edition devotes two chapters to the frequency domain and three to time series regression models, models for heteroscedasticty, and threshold models. All of the ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment. The tables and graphical displays are accompanied by the R commands used to produce them. An extensive R package, TSA, which contains many new or revised R functions and all of the data used in the book, accompanies the written text. Script files of R commands for each chapter are available for download. There is also an extensive appendix in the book that leads the reader through the use of R commands and the new R package to carry out the analyses.
This book discusses dynamical systems that are typically driven by stochastic dynamic noise. It is written by two statisticians essentially for the statistically inclined readers, although readers whose primary interests are in determinate systems will find some of the methodology explained in this book of interest. The statistical approach adopted in this book differs in many ways from the deterministic approach to dynamical systems. Even the very basic notion of initial-value sensitivity requires careful development in the new setting provided. This book covers, in varying depth, many of the contributions made by the statisticians in the past twenty years or so towards our understanding of estimation, the Lyapunov-like index, the nonparametric regression, and many others, many of which are motivated by their dynamical system counterparts but have now acquired a distinct statistical flavour. Kung-Sik Chan is a professor at the University of Iowa, Department of Statistics and Actuarial Science. He is an elected member of the International Statistical Institute. He has served on the editorial boards of the Journal of Business and Economic Statistics and Statistica Sinica. He received a Faculty Scholar Award from the University of Iowa in 1996. Howell Tong holds the Chair of Statistics at the London School of Economics and the University of Hong Kong. He is a foreign member of the Norwegian Academy of Science and Letters, an elected member of the International Statistical Institute and a Council member of its Bernoulli Society, an elected fellow of the Institute of Mathematical Statistics, and an honorary fellow of the Institute of Actuaries (London). He was the Founding Dean of the Graduate School and sometimes the Acting Pro-Vice Chancellor (Research) at the University of Hong Kong. He has served on the editorial boards of several international journals, including Biometrika, Journal of Royal Statistical Society (Series B), Statistica Sinica, and others. He is a guest professor of the Academy of Mathematical and System Sciences of the Chinese Academy of Sciences and received a National Natural Science Prize (China) in the category of Mathematics and Mechanics (Class II) in 2001. He has also held visiting professorships at various universities, including the Imperial College in London, the ETH in Zurich, the Fourier University in Grenoble, the Wall Institute at the University of British Columbia, Vancouver, and the Chinese University of Hong Kong.
This book discusses dynamical systems that are typically driven by stochastic dynamic noise. It is written by two statisticians essentially for the statistically inclined readers. It covers many of the contributions made by the statisticians in the past twenty years or so towards our understanding of estimation, the Lyapunov-like index, the nonparametric regression, and many others, many of which are motivated by their dynamical system counterparts but have now acquired a distinct statistical flavor.
|
You may like...
|