0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Pulsation and Mass Loss in Stars - Proceedings of a Workshop Held in Trieste, Italy, September 14-18, 1987 (Paperback,... Pulsation and Mass Loss in Stars - Proceedings of a Workshop Held in Trieste, Italy, September 14-18, 1987 (Paperback, Softcover reprint of the original 1st ed. 1988)
R. Stalio, L.A. Willson
R4,503 Discovery Miles 45 030 Ships in 10 - 15 working days

Stellar mass loss is an essential part of the cycling of material from the interstellar medium into stars and back, and must be understood if we are to model processes on galactic to cosmological scales. The study of stellar winds and the effects of stellar mass loss has reached a particularly exciting stage where observational capabilities are increasingly able to provide interesting constraints on models and theories. Recent resu1ts from theoretical and observational work for both hot and cool stars with substantial winds have led to the suggestion that a combination of pulsation with other mechanisms makes for particularly efficient mass loss from stars. This provided the original motivation for the organization of this workshop. The conference was organized along relatively conventional lines according to the types of objects being scrutinized. However the true unity of the proceedings comes from the interplay of the mechanisms involved. For example, for the cool, luminous Mira variables, pulsation leads to shock waves that extend the atmosphere, enhancing dust formation; radiation pressure on dust drives the wind, cooling the atmosphere and in some cases suppressing the shocks. Similarly for the Be stars, both pulsation (in this case, non-radial) and radiation pressure (due to UV resonance lines) are expected to be important, and this expectation is at least qualitatively borne out by the observations.

Angular Momentum and Mass Loss for Hot Stars (Paperback, Softcover reprint of the original 1st ed. 1990): L.A. Willson, R.... Angular Momentum and Mass Loss for Hot Stars (Paperback, Softcover reprint of the original 1st ed. 1990)
L.A. Willson, R. Stalio
R5,786 Discovery Miles 57 860 Ships in 10 - 15 working days

Fundamental unsolved problems of stellar astrophysics include the effects of angular momentum on stellar structure and evolution, the nature and efficiency of the processes by which angular momentum is redistributed within and lost from stars, and the role that stellar rotation plays in enhancing or driving stellar mass loss. There appears to be a qualitative change in the nature and efficiency of these mechanisms near spectral type FO: hotter (more massive) stars typically retain more angular momentum at least until they reach the main sequence, while cooler stars typically spin down quickly. For the hotter stars, recent work suggests a strong link between the type of pulsation behavior, the mass loss rates, and the rotation velocity. If the same mechanisms are able to drive mass loss from the main sequence A stars, as has recently been proposed, then the current interpretations of a number of observations will be drastically affected: e. g. the ages of clusters may be incorrect by up to a factor of two, and the surface abundances of isotopes of He, Li and Be may no longer give constraints on cosmological nucleosynthesis. There are also effects on the evolution of the abundances of elements in the interstellar medium and on the general evolution of populations of stars. Thus the questions of the mechanisms of angular momentum and mass loss of stars more massive than the sun is important not only for stellar studies but for the foundations of much of modern astrophysics.

Angular Momentum and Mass Loss for Hot Stars (Hardcover, 1990 ed.): L.A. Willson, R. Stalio Angular Momentum and Mass Loss for Hot Stars (Hardcover, 1990 ed.)
L.A. Willson, R. Stalio
R5,997 Discovery Miles 59 970 Ships in 10 - 15 working days

Fundamental unsolved problems of stellar astrophysics include the effects of angular momentum on stellar structure and evolution, the nature and efficiency of the processes by which angular momentum is redistributed within and lost from stars, and the role that stellar rotation plays in enhancing or driving stellar mass loss. There appears to be a qualitative change in the nature and efficiency of these mechanisms near spectral type FO: hotter (more massive) stars typically retain more angular momentum at least until they reach the main sequence, while cooler stars typically spin down quickly. For the hotter stars, recent work suggests a strong link between the type of pulsation behavior, the mass loss rates, and the rotation velocity. If the same mechanisms are able to drive mass loss from the main sequence A stars, as has recently been proposed, then the current interpretations of a number of observations will be drastically affected: e. g. the ages of clusters may be incorrect by up to a factor of two, and the surface abundances of isotopes of He, Li and Be may no longer give constraints on cosmological nucleosynthesis. There are also effects on the evolution of the abundances of elements in the interstellar medium and on the general evolution of populations of stars. Thus the questions of the mechanisms of angular momentum and mass loss of stars more massive than the sun is important not only for stellar studies but for the foundations of much of modern astrophysics.

Pulsation and Mass Loss in Stars - Proceedings of a Workshop Held in Trieste, Italy, September 14-18, 1987 (Hardcover, 1988... Pulsation and Mass Loss in Stars - Proceedings of a Workshop Held in Trieste, Italy, September 14-18, 1987 (Hardcover, 1988 ed.)
R. Stalio, L.A. Willson
R4,703 Discovery Miles 47 030 Ships in 10 - 15 working days

Stellar mass loss is an essential part of the cycling of material from the interstellar medium into stars and back, and must be understood if we are to model processes on galactic to cosmological scales. The study of stellar winds and the effects of stellar mass loss has reached a particularly exciting stage where observational capabilities are increasingly able to provide interesting constraints on models and theories. Recent resu1ts from theoretical and observational work for both hot and cool stars with substantial winds have led to the suggestion that a combination of pulsation with other mechanisms makes for particularly efficient mass loss from stars. This provided the original motivation for the organization of this workshop. The conference was organized along relatively conventional lines according to the types of objects being scrutinized. However the true unity of the proceedings comes from the interplay of the mechanisms involved. For example, for the cool, luminous Mira variables, pulsation leads to shock waves that extend the atmosphere, enhancing dust formation; radiation pressure on dust drives the wind, cooling the atmosphere and in some cases suppressing the shocks. Similarly for the Be stars, both pulsation (in this case, non-radial) and radiation pressure (due to UV resonance lines) are expected to be important, and this expectation is at least qualitatively borne out by the observations.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Conforming Bandage
R5 Discovery Miles 50
Lucky Lubricating Clipper Oil (100ml)
R49 R29 Discovery Miles 290
Croxley Create Wax Crayons - 8mm (24…
R16 Discovery Miles 160
Alva 5-Piece Roll-Up BBQ/ Braai Tool Set
R389 R346 Discovery Miles 3 460
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
One Hundred Years Of Dispossession - My…
Lebogang Seale Paperback R320 R235 Discovery Miles 2 350
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Shield Fresh 24 Gel Air Freshener…
R31 Discovery Miles 310
Bostik Double-Sided Tape (18mm x 10m…
 (1)
R31 Discovery Miles 310

 

Partners